Osteoporosis International

, Volume 24, Issue 9, pp 2377–2386 | Cite as

NF-κB signaling and bone resorption

  • Y. Abu-Amer


The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.


IKK NF-κB Osteoclast Osteolysis 



The author is supported by grants from the National Institute of Health/NIAMS (AR-049192, AR-054326) and the Shriners Hospital for Children (No. 85600).

Conflicts of interest



  1. 1.
    Ting AY, Endy D (2002) Signal transduction: decoding NF-kB signaling. Science 298:1189–1190PubMedCrossRefGoogle Scholar
  2. 2.
    Baldwin AS Jr (1996) The NF-kB and IkB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683 [Review; 180 refs]PubMedCrossRefGoogle Scholar
  3. 3.
    Baeuerle PA, Baltimore D (1996) NF-kB: ten years after. Cell 87:13–20PubMedCrossRefGoogle Scholar
  4. 4.
    Hayden MS, Ghosh S (2004) Signaling to NF-kB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  5. 5.
    Siebenlist U, Franzoso G (2001) Structure, regulation and function of NF-kB. Proc Natl Acad Sci U S A 89:4333–4337Google Scholar
  6. 6.
    Stancovski I, Baltimore D (1997) NF-kB activation: the IkB kinase revealed? Cell 91:299–302PubMedCrossRefGoogle Scholar
  7. 7.
    Woronicz J, Gao X, Cao Z, Rothe M, Goeddel D (1997) IkB kinase-beta: NF-kB activation and complex formation with IkB kinase-alpha and NIK. Science 278:866–869PubMedCrossRefGoogle Scholar
  8. 8.
    Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IkB by IKKa and IKKb: discrimination between free and NF-kB-bound substrate. Science 281:1360–1363PubMedCrossRefGoogle Scholar
  9. 9.
    Fan C, Li Q, Zhang Y, Liu X, Luo M, Abbott D, Zhou W, Engelhardt JF (2004) I{kappa}B{alpha} and IkB-beta possess injury context-specific functions that uniquely influence hepatic NF-kB induction and inflammation. J Clin Invest 113:746–755PubMedGoogle Scholar
  10. 10.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  11. 11.
    Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288PubMedCrossRefGoogle Scholar
  12. 12.
    Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26CrossRefGoogle Scholar
  13. 13.
    Iotsova V, Caamaäno J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRefGoogle Scholar
  14. 14.
    Franzoso G, Carlson L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirment for NF-kB in osteoclast and B-cell development. Genes Dev 11:3482–3496PubMedCrossRefGoogle Scholar
  15. 15.
    Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139PubMedCrossRefGoogle Scholar
  16. 16.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira DSA, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRefGoogle Scholar
  17. 17.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedCrossRefGoogle Scholar
  18. 18.
    Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055PubMedCrossRefGoogle Scholar
  19. 19.
    Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci 97:1566–1571PubMedCrossRefGoogle Scholar
  20. 20.
    Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4:1041–1049PubMedCrossRefGoogle Scholar
  21. 21.
    Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568PubMedGoogle Scholar
  22. 22.
    Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139PubMedCrossRefGoogle Scholar
  23. 23.
    Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355PubMedCrossRefGoogle Scholar
  24. 24.
    Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409PubMedCrossRefGoogle Scholar
  25. 25.
    Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMedGoogle Scholar
  26. 26.
    Soysa NS, Alles N, Takahashi M, Aoki K, Ohya K (2011) Defective nuclear factor-kappaB-inducing kinase in aly/aly mice prevents bone resorption induced by local injection of lipopolysaccharide. J Periodontal Res 46:280–284PubMedCrossRefGoogle Scholar
  27. 27.
    Soysa NS, Alles N, Weih D, Lovas A, Mian AH, Shimokawa H, Yasuda H, Weih F, Jimi E, Ohya K, Aoki K (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res 25:809–818PubMedGoogle Scholar
  28. 28.
    Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866PubMedCrossRefGoogle Scholar
  29. 29.
    Regnier C, Song H, Gao X, Goeddel D, Cao Z, Rothe M (1997) Identification and characterization of an I-kB kinase. Cell 90:373–383PubMedCrossRefGoogle Scholar
  30. 30.
    Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME, Takeda K, Akira S, Dougall WC (2004) Osteoclast differentiation is impaired in the absence of IkB kinase-alpha. J Biol Chem 279:54841–54848PubMedCrossRefGoogle Scholar
  31. 31.
    Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu L-C, Cao Y, Schett G, Wagner EF, Karin M (2005) IkB kinase-beta, but not IKK-alpha, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201:1677–1687PubMedCrossRefGoogle Scholar
  32. 32.
    Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL (2003) The I-kappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRefGoogle Scholar
  33. 33.
    Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O'Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 105:3897–3902PubMedCrossRefGoogle Scholar
  34. 34.
    Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMedGoogle Scholar
  35. 35.
    Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119:3024–3034PubMedCrossRefGoogle Scholar
  36. 36.
    Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553PubMedCrossRefGoogle Scholar
  37. 37.
    Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRefGoogle Scholar
  38. 38.
    Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694PubMedCrossRefGoogle Scholar
  39. 39.
    Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85PubMedCrossRefGoogle Scholar
  40. 40.
    Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134PubMedCrossRefGoogle Scholar
  41. 41.
    Bingham AH, Davenport RJ, Gowers L, Knight RL, Lowe C, Owen DA, Parry DM, Pitt WR (2004) A novel series of potent and selective IKK2 inhibitors. Bioorg Med Chem Lett 14:409–412PubMedCrossRefGoogle Scholar
  42. 42.
    May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000PubMedCrossRefGoogle Scholar
  43. 43.
    Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, Kettritz R (2003) Inhibition of NF-kB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood 102:2259–2267PubMedCrossRefGoogle Scholar
  44. 44.
    Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthop Res 24:1358–1365PubMedCrossRefGoogle Scholar
  45. 45.
    Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedCrossRefGoogle Scholar
  46. 46.
    Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M (2007) Cutting edge: the I{kappa}B Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179:2681–2685PubMedGoogle Scholar
  47. 47.
    Tas SW, de Jong EC, Hajji N, May MJ, Ghosh S, Vervoordeldonk MJ, Tak PP (2005) Selective inhibition of NF-kappaB in dendritic cells by the NEMO-binding domain peptide blocks maturation and prevents T cell proliferation and polarization. Eur J Immunol 35:1164–1174PubMedCrossRefGoogle Scholar
  48. 48.
    Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS (2011) NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178:1059–1068PubMedCrossRefGoogle Scholar
  49. 49.
    Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624PubMedCrossRefGoogle Scholar
  50. 50.
    May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539PubMedCrossRefGoogle Scholar
  51. 51.
    Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530PubMedCrossRefGoogle Scholar
  52. 52.
    Courtois G, Smahi A, Israel A (2001) NEMO/IKK-gamma: linking NF-kB to human disease. Trends Mol Med 7:427–430PubMedCrossRefGoogle Scholar
  53. 53.
    Hacker H, and Karin M (2006) Regulation and function of IKK and IKK-related kinases. Science's Stke [Electronic Resource]: Signal Transduction Knowledge Environment 2006, re13Google Scholar
  54. 54.
    Hay R (2004) Modifiying NEMO. Nat Cell Biol 6:89–91PubMedCrossRefGoogle Scholar
  55. 55.
    Li XH, Fang X, Gaynor RB (2001) Role of IKK-gamma /NEMO in assembly of the IkB kinase complex. J Biol Chem 276:4494–4500PubMedCrossRefGoogle Scholar
  56. 56.
    Burns KA, Martinon F (2004) Inflammatory diseases: is ubiquitinated NEMO at the hub? Curr Biol 14:R1040–R1042PubMedCrossRefGoogle Scholar
  57. 57.
    Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F (2009) The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem 284:2902–2907PubMedCrossRefGoogle Scholar
  58. 58.
    Kawadler H, Yang X (2006) Lys63-linked polyubiquitin chains: linking more than just ubiquitin. Cancer Biol Ther 5:1273–1274PubMedCrossRefGoogle Scholar
  59. 59.
    Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28:2885–2895PubMedCrossRefGoogle Scholar
  60. 60.
    Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226PubMedCrossRefGoogle Scholar
  61. 61.
    Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286PubMedCrossRefGoogle Scholar
  62. 62.
    Gautheron J, Courtois G (2010) “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Cell Mol Life Sci 67:3101–3113PubMedCrossRefGoogle Scholar
  63. 63.
    Ni C-Y, Wu Z-H, Florence WC, Parekh VV, Arrate MP, Pierce S, Schweitzer B, Van Kaer L, Joyce S, Miyamoto S, Ballard DW, Oltz EM (2008) Cutting edge: K63-linked polyubiquitination of NEMO modulates TLR signaling and inflammation in vivo. J Immunol 180:7107–7111PubMedGoogle Scholar
  64. 64.
    Tokunaga F, Sakata S-I, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation. Nat Cell Biol 11:123–132PubMedCrossRefGoogle Scholar
  65. 65.
    Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-[kappa]B pathway through ubiquitination of NEMO. Nature 427:167–171PubMedCrossRefGoogle Scholar
  66. 66.
    Dèoffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israèel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285CrossRefGoogle Scholar
  67. 67.
    Kawai T, Nishikomori R, Heike T (2012) Diagnosis and treatment in anhidrotic ectodermal dysplasia with immunodeficiency. Allergol Int 61:207–217PubMedGoogle Scholar
  68. 68.
    Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC (2010) A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr 169:1403–1407PubMedCrossRefGoogle Scholar
  69. 69.
    Permaul P, Narla A, Hornick JL, Pai SY (2009) Allogeneic hematopoietic stem cell transplantation for X-linked ectodermal dysplasia and immunodeficiency: case report and review of outcomes. Immunol Res 44:89–98PubMedCrossRefGoogle Scholar
  70. 70.
    Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL, Israel A (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11:2371–2375PubMedCrossRefGoogle Scholar
  71. 71.
    Mansour S, Woffendin H, Mitton S, Jeffery I, Jakins T, Kenwrick S, Murday VA (2001) Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99:172–177PubMedCrossRefGoogle Scholar
  72. 72.
    Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25:160–165PubMedCrossRefGoogle Scholar
  73. 73.
    Krikos A, Laherty CD, Dixit VM (1992) Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 267:17971–17976PubMedGoogle Scholar
  74. 74.
    Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, Mosialos G, Li JD (2004) NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279:36171–36174PubMedCrossRefGoogle Scholar
  75. 75.
    Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354PubMedCrossRefGoogle Scholar
  76. 76.
    Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866PubMedCrossRefGoogle Scholar
  77. 77.
    Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone. J Biol Chem 278:37409–37412PubMedCrossRefGoogle Scholar
  78. 78.
    Layfield R, Shaw B (2007) Ubiquitin-mediated signalling and Paget's disease of bone. BMC Biochem 8(Suppl 1):S5PubMedCrossRefGoogle Scholar
  79. 79.
    Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20:7–17PubMedCrossRefGoogle Scholar
  80. 80.
    Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, Geboes L, Louagie E, Mc Guire C, Vereecke L, Chu Y, Boon L, Staelens S, Matthys P, Lambrecht BN, Schmidt-Supprian M, Pasparakis M, Elewaut D, Beyaert R, van Loo G (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912PubMedCrossRefGoogle Scholar
  81. 81.
    Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRefGoogle Scholar
  82. 82.
    Kubota T, Hoshino M, Aoki K, Ohya K, Komano Y, Nanki T, Miyasaka N, Umezawa K (2007) NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor. Arthritis Res Ther 9:R97PubMedCrossRefGoogle Scholar
  83. 83.
    Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRefGoogle Scholar
  84. 84.
    Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCrossRefGoogle Scholar
  85. 85.
    Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140PubMedCrossRefGoogle Scholar
  86. 86.
    Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, Ostrowski MC, Olsen BR, Glimcher LH (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 118:3775–3789PubMedCrossRefGoogle Scholar
  87. 87.
    Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253PubMedCrossRefGoogle Scholar
  88. 88.
    Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480PubMedCrossRefGoogle Scholar
  89. 89.
    Abu-Amer Y (2009) Inflammation, cancer, and bone loss. Curr Opin Pharmacol 9:427–433PubMedCrossRefGoogle Scholar
  90. 90.
    Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCrossRefGoogle Scholar
  91. 91.
    Karin M (2008) The I[kappa]B kinase—a bridge between inflammation and cancer. Cell Res 18:334–342PubMedCrossRefGoogle Scholar
  92. 92.
    Sweeney SE, Firestein GS (2004) Rheumatoid arthritis: regulation of synovial inflammation. Int J Biochem Cell Biol 36:372–378PubMedCrossRefGoogle Scholar
  93. 93.
    Findlay DM, Haynes DR (2005) Mechanisms of bone loss in rheumatoid arthritis. Mod Rheumatol 15:232–240PubMedCrossRefGoogle Scholar
  94. 94.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRefGoogle Scholar
  95. 95.
    Schett G (2007) Erosive arthritis. Arthritis Res Ther 9(Suppl 1):S2PubMedCrossRefGoogle Scholar
  96. 96.
    Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514PubMedCrossRefGoogle Scholar
  97. 97.
    Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371PubMedCrossRefGoogle Scholar
  98. 98.
    Gabay C (2002) Cytokine inhibitors in the treatment of rheumatoid arthritis. Expert Opin Biol Ther 2:135–149PubMedCrossRefGoogle Scholar
  99. 99.
    Nakashima T, Wada T, Penninger J (2003) RANKL and RANK as novel therapeutic targets for arthritis. Curr Op Rheum 15:280–287CrossRefGoogle Scholar
  100. 100.
    Pincus T, Yazici Y, Sokka T, Aletaha D, Smolen JS (2003) Methotrexate as the “anchor drug” for the treatment of early rheumatoid arthritis. Clin Exp Rheumatol 21:S179–S185PubMedGoogle Scholar
  101. 101.
    Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2:473–488PubMedCrossRefGoogle Scholar
  102. 102.
    Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201:1355–1359PubMedCrossRefGoogle Scholar
  103. 103.
    Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study Group (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309 [see comment]PubMedCrossRefGoogle Scholar
  104. 104.
    Abu-Amer Y, Faccio R (2006) Therapeutic approaches in bone pathogeneses: targeting the IKK/NF-kB axis. Future Med 1:133–146Google Scholar
  105. 105.
    Seetharaman R, Mora AL, Nabozny G, Boothby M, Chen J (1999) Essential role of T cell NF-kappa B activation in collagen-induced arthritis. J Immunol 163:1577–1583PubMedGoogle Scholar
  106. 106.
    Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553PubMedGoogle Scholar
  107. 107.
    Gallo J, Kamâinek P, Tichâa V, Rihâakovâa P, Ditmar R (2002) Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palackây Olomouc Czech Repub 146:21–28CrossRefGoogle Scholar
  108. 108.
    Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6PubMedCrossRefGoogle Scholar
  109. 109.
    Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261PubMedCrossRefGoogle Scholar
  110. 110.
    Yamanaka Y, Karuppaiah K, Abu-Amer Y (2011) Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway. J Biol Chem 286:23735–23741PubMedCrossRefGoogle Scholar
  111. 111.
    Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560PubMedCrossRefGoogle Scholar
  112. 112.
    Layfield R (2007) The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med 9:1–13PubMedCrossRefGoogle Scholar
  113. 113.
    Hicke L, Schubert HL, Hill CP (2005) Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6:610–621PubMedCrossRefGoogle Scholar
  114. 114.
    Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappa B activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586PubMedCrossRefGoogle Scholar
  115. 115.
    Cochran DL (2008) Inflammation and bone loss in periodontal disease. J Periodontol 79:1569–1576PubMedCrossRefGoogle Scholar
  116. 116.
    de Oliveira RR, Novaes AB Jr, Garlet GP, de Souza RF, Taba M Jr, Sato S, de Souza SL, Palioto DB, Grisi MF, Feres M (2011) The effect of a single episode of antimicrobial photodynamic therapy in the treatment of experimental periodontitis. Microbiological profile and cytokine pattern in the dog mandible. Lasers Med Sci 26:359–367PubMedCrossRefGoogle Scholar
  117. 117.
    Feldman M, Tanabe S, Epifano F, Genovese S, Curini M, Grenier D (2011) Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: potential therapeutic benefits. J Nat Prod 74:26–31PubMedCrossRefGoogle Scholar
  118. 118.
    Milward MR, Chapple IL, Wright HJ, Millard JL, Matthews JB, Cooper PR (2007) Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol 148:307–324PubMedCrossRefGoogle Scholar
  119. 119.
    Huang GT, Zhang HB, Dang HN, Haake SK (2004) Differential regulation of cytokine genes in gingival epithelial cells challenged by Fusobacterium nucleatum and Porphyromonas gingivalis. Microb Pathog 37:303–312PubMedCrossRefGoogle Scholar
  120. 120.
    Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100:1557–1565PubMedCrossRefGoogle Scholar
  121. 121.
    McCormick RK (2007) Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev 12:113–145PubMedGoogle Scholar
  122. 122.
    Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151PubMedCrossRefGoogle Scholar
  123. 123.
    Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRefGoogle Scholar
  124. 124.
    Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedCrossRefGoogle Scholar
  125. 125.
    Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15:4971–4979PubMedGoogle Scholar
  126. 126.
    Sugiyama T (2001) Involvement of interleukin-6 and prostaglandin E2 in periarticular osteoporosis of postmenopausal women with rheumatoid arthritis. J Bone Miner Metab 19:89–96PubMedCrossRefGoogle Scholar
  127. 127.
    Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52PubMedCrossRefGoogle Scholar
  128. 128.
    Lencel P, Magne D (2011) Inflammaging: the driving force in osteoporosis? Med Hypotheses 76:317–321PubMedCrossRefGoogle Scholar
  129. 129.
    Romas E, Gillespie MT (2006) Inflammation-induced bone loss: can it be prevented? Rheum Dis Clin North Am 32:759–773PubMedCrossRefGoogle Scholar
  130. 130.
    Tilg H, Moschen AR, Kaser A, Pines A, Dotan I (2008) Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57:684–694PubMedCrossRefGoogle Scholar
  131. 131.
    Davignon J, Jacob RF, Mason RP (2004) The antioxidant effects of statins. Coron Artery Dis 15:251–258PubMedCrossRefGoogle Scholar
  132. 132.
    Nazrun AS, Norazlina M, Norliza M, Nirwana SI (2012) The anti-inflammatory role of vitamin E in prevention of osteoporosis. Adv Pharmacol Sci 2012:7Google Scholar
  133. 133.
    Moon HJ, Kim SE, Yun YP, Hwang YS, Bang JB, Park JH, Kwon IK (2011) Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 43:605–612PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Department of Cell Biology & PhysiologyWashington University School of MedicineSaint LouisUSA

Personalised recommendations