Osteoporosis International

, Volume 24, Issue 8, pp 2223–2230

Serum osteocalcin levels are inversely associated with abdominal aortic calcification in men with type 2 diabetes mellitus

  • N. Ogawa-Furuya
  • T. Yamaguchi
  • M. Yamamoto
  • I. Kanazawa
  • T. Sugimoto
Original Article



We found that serum osteocalcin (OC) and undercarboxylated OC (ucOC) levels were negatively associated with abdominal aortic calcification in type 2 diabetes mellitus (T2DM) men. This finding suggests that circulating OC and ucOC are not only related to glucose or fat metabolism but also to arteriosclerosis.


Recent studies revealed that serum osteocalcin levels were associated with not only bone metabolism but also glucose and fat metabolism. However, the relationship between serum OC levels and arteriosclerosis remains controversial. We examined whether or not bone metabolic markers including OC are associated with abdominal aortic calcification in patients with type 2 diabetes mellitus.


We recruited 118 men and 100 postmenopausal women with T2DM. We evaluated the abdominal aortic calcification score (ACS) on a lateral lumbar radiograph and examined the association between serum OC or undercarboxylated OC levels and ACS.


The ACS of 3 and greater, which corresponded well to the highest quartile, was significantly and negatively associated with serum OC and ucOC levels in men by logistic regression analyses after adjusting for age, BMI, serum levels of creatinine and LDL cholesterol, radial bone mineral density, smoking, duration of DM, hemoglobin A1c, and the index of insulin resistance [odds ratio (OR) 0.36, 95 % confidence interval (CI) 0.19–0.70, P < 0.005, and OR 0.28, 95 % CI 0.12–0.69, P < 0.01, per standard deviation increase in OC and ucOC, respectively]. These observations were still significant after an additional adjustment for other bone markers. In contrast, there were no significant relationships with serum OC or ucOC levels and ACS in women.


These findings suggest that serum OC and ucOC levels are associated with not only bone metabolism but also arteriosclerosis in men, but not in women with type 2 diabetes mellitus.


Abdominal aortic calcification Arteriosclerosis Diabetes mellitus Osteocalcin Undercarboxylated osteocalcin 


  1. 1.
    Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047PubMedGoogle Scholar
  2. 2.
    Price PA (1989) Gla-containing proteins of bone. Connect Tissue Res 21:51–57, discussion 57–60PubMedCrossRefGoogle Scholar
  3. 3.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266–5270PubMedCrossRefGoogle Scholar
  4. 4.
    Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedCrossRefGoogle Scholar
  5. 5.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedCrossRefGoogle Scholar
  6. 6.
    Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319PubMedCrossRefGoogle Scholar
  7. 7.
    Fernandez-Real JM, Izquierdo M, Ortega F et al (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94:237–245PubMedCrossRefGoogle Scholar
  8. 8.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, Sugimoto T (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:45–49PubMedCrossRefGoogle Scholar
  9. 9.
    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22:187–194PubMedCrossRefGoogle Scholar
  10. 10.
    Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, Mellstrom D (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791PubMedCrossRefGoogle Scholar
  11. 11.
    Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832PubMedCrossRefGoogle Scholar
  12. 12.
    Fujishima M, Kiyohara Y, Kato I, Ohmura T, Iwamoto H, Nakayama K, Ohmori S, Yoshitake T (1996) Diabetes and cardiovascular disease in a prospective population survey in Japan: the Hisayama Study. Diabetes 45(Suppl 3):S14–16PubMedGoogle Scholar
  13. 13.
    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234PubMedCrossRefGoogle Scholar
  14. 14.
    Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250PubMedCrossRefGoogle Scholar
  15. 15.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  16. 16.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  17. 17.
    Price PA, Nishimoto SK (1980) Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci U S A 77:2234–2238PubMedCrossRefGoogle Scholar
  18. 18.
    Nishimura J, Arai N, Tohmatsu J (2007) Measurement of serum undercarboxylated osteocalcin by ECLIA with the “Picolumi ucOC” kit. Clin Calcium 17:1702–1708PubMedGoogle Scholar
  19. 19.
    Ebrahim S, Papacosta O, Whincup P et al (1999) Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke 30:841–850PubMedCrossRefGoogle Scholar
  20. 20.
    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ (2010) Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–511PubMedCrossRefGoogle Scholar
  21. 21.
    O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22PubMedCrossRefGoogle Scholar
  22. 22.
    Golestani R, Tio R, Zeebregts CJ, Zeilstra A, Dierckx RA, Boersma HH, Hillege HL, Slart RH (2010) Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann Med 42:539–545PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson PW, Kauppila LI, O'Donnell CJ, Kiel DP, Hannan M, Polak JM, Cupples LA (2001) Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation 103:1529–1534PubMedCrossRefGoogle Scholar
  24. 24.
    Wong ND, Lopez VA, Allison M, Detrano RC, Blumenthal RS, Folsom AR, Ouyang P, Criqui MH (2011) Abdominal aortic calcium and multi-site atherosclerosis: the Multiethnic Study of Atherosclerosis. Atherosclerosis 214:436–441PubMedCrossRefGoogle Scholar
  25. 25.
    Bao Y, Zhou M, Lu Z, Li H, Wang Y, Sun L, Gao M, Wei M, Jia W (2011) Serum levels of osteocalcin are inversely associated with the metabolic syndrome and the severity of coronary artery disease in Chinese men. Clin Endocrinol (Oxf) 75:196–201CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Qi L, Gu W et al (2010) Relation of serum osteocalcin level to risk of coronary heart disease in Chinese adults. Am J Cardiol 106:1461–1465PubMedCrossRefGoogle Scholar
  27. 27.
    Pennisi P, Signorelli SS, Riccobene S, Celotta G, Di Pino L, La Malfa T, Fiore CE (2004) Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 15:389–395PubMedCrossRefGoogle Scholar
  28. 28.
    Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T, Okuno Y, Nishizawa Y, Otani S, Morii H (1995) Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 10:1050–1056PubMedCrossRefGoogle Scholar
  29. 29.
    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2009) Adiponectin is associated with changes in bone markers during glycemic control in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:3031–3037PubMedCrossRefGoogle Scholar
  30. 30.
    Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920PubMedCrossRefGoogle Scholar
  31. 31.
    Harno E, Edwards G, Geraghty AR, Ward DT, Dodd RH, Dauban P, Faure H, Ruat M, Weston AH (2008) Evidence for the presence of GPRC6A receptors in rat mesenteric arteries. Cell Calcium 44:210–219PubMedCrossRefGoogle Scholar
  32. 32.
    Montalcini T, Emanuele V, Ceravolo R, Gorgone G, Sesti G, Perticone F, Pujia A (2004) Relation of low bone mineral density and carotid atherosclerosis in postmenopausal women. Am J Cardiol 94:266–269PubMedCrossRefGoogle Scholar
  33. 33.
    Parker BD, Bauer DC, Ensrud KE, Ix JH (2010) Association of osteocalcin and abdominal aortic calcification in older women: the study of osteoporotic fractures. Calcif Tissue Int 86:185–191PubMedCrossRefGoogle Scholar
  34. 34.
    Oury F, Sumara G, Sumara O et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809PubMedCrossRefGoogle Scholar
  35. 35.
    Kanazawa I, Tanaka K, Ogawa N, Yamauchi M, Yamaguchi T, Sugimoto T (2012) Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos IntGoogle Scholar
  36. 36.
    Hu X, Rui L, Zhu T, Xia H, Yang X, Wang X, Liu H, Lu Z, Jiang H (2011) Low testosterone level in middle-aged male patients with coronary artery disease. Eur J Intern Med 22:e133–136PubMedCrossRefGoogle Scholar
  37. 37.
    Svartberg J, von Muhlen D, Mathiesen E, Joakimsen O, Bonaa KH, Stensland-Bugge E (2006) Low testosterone levels are associated with carotid atherosclerosis in men. J Intern Med 259:576–582PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • N. Ogawa-Furuya
    • 1
  • T. Yamaguchi
    • 1
  • M. Yamamoto
    • 1
  • I. Kanazawa
    • 1
  • T. Sugimoto
    • 1
  1. 1.Department of Internal Medicine 1Shimane University Faculty of MedicineIzumoJapan

Personalised recommendations