Osteoporosis International

, Volume 24, Issue 7, pp 2115–2121 | Cite as

Zoledronic acid enhances bone-implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats

Original Article

Abstract

Summary

This study was designed to compare the effects of alendronate (ALN), strontium ranelate (SR), and zoledronic acid (ZOL) on bone-implant osseointegration in ovariectomized rats. Histological examination and biomechanical tests show that ZOL, ALN, and SR enhance bone-implant osseointegration; ALN and SR have similar effects, while ZOL enhances bone-implant osseointegration more than ALN and SR

Introduction

This study aims to compare the effects of ALN, SR, and ZOL on bone-implant osseointegration in ovariectomized rats.

Methods

Sixty female Sprague–Dawley rats were included in this study. Of them, 48 rats were ovariectomized (OVX) and assigned to four groups: OVX (OVX + Veh), ALN (OVX + ALN), SR (OVX + SR), and ZOL (OVX + ZOL). And another 12 rats were sham-operated as a control group (Sham). Four weeks after ovariectomy, HA-coated titanium implants were inserted into the tibias bilaterally in all rats. Then the rats in groups ALN, SR, and ZOL were systemically administrated with alendronate (7 mg/kg/week, orally), strontium ranelate (500 mg/kg/day, orally), or a single injection of zoledronic acid (0.1 mg/kg, iv), respectively. Twelve weeks after implantation, all rats were sacrificed to get the femurs and tibias. Histological examination and biomechanical tests were used to evaluate bone-implant osseointegration in all groups.

Results

ALN, SR, and ZOL significantly increased distal femoral BMD when compared with group OVX; ZOL increased BMD significantly more than ALN and SR (P < 0.05). Significant increase of bone-to-implant contact and peri-implant bone fraction were observed in groups ALN, SR, and ZOL when compared with group OVX (P < 0.05). Groups ALN and SR were inferior to groups ZOL and Sham (P < 0.05) in bone-to-implant contact and peri-implant bone fraction. Similar results were found in biomechanical testing (max pushout force).

Conclusions

In rats losing bone rapidly after ovariectomy, systemic administration of ZOL, ALN, and SR causes better bone-implant osseointegration when compared to OVX; ALN and SR have similar positive effects on osseointegration, while ZOL, that was given in a dose with more positive BMD effect than that of ALN or SR, causes better osseointegration than either ALN or SR.

Keywords

Alendronate Osseointegration Ovariectomization Strontium ranelate Zoledronic acid 

Notes

Acknowledgments

This study was funded by the Guangdong Provincial Science and Technology Foundation in 2007 (NO2007B312004). The histological examination of this study was finished in The Center for New Drug Function Research, School of Life Science and Biopharmacology, Guangdong Pharmaceutical University. Thanks to Prof. QingNan Li for the help of histological examination. The biomechanical testing was finished in the Orthopedic Research Center of the First Affiliated Hospital of Sun Yat-sen University, and we thank JianWei Chen for the help of biomechanical testing.

Conflicts of interest

None.

References

  1. 1.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287PubMedCrossRefGoogle Scholar
  2. 2.
    Becker W, Hujoel PP, Becker BE et al (2000) Osteoporosis and implant failure: an exploratory case-control study. J Periodontol 71(4):625–31PubMedCrossRefGoogle Scholar
  3. 3.
    Holahan CM, Koka S, Kennel KA et al (2008) Effect of osteoporotic status on the survival of titanium dental implants. Int J Oral Maxillofac Implants 23(5):905–910PubMedGoogle Scholar
  4. 4.
    Keller JC, Stewart M, Roehm M et al (2004) Osteoporosis-like bone conditions affect osseointegration of implants. Int J Oral Maxillofac Implants 19(5):687–694PubMedGoogle Scholar
  5. 5.
    Duarte PM, César Neto JB, Gonçalves PF et al (2003) Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent 12(4):340–346PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen TB, Bechtold JE, Chen X et al (2007) Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants. J Orthop Res 25:772–778PubMedCrossRefGoogle Scholar
  7. 7.
    Qi M, Hu J, Li J et al (2012) Effect of zoledronate acid treatment on osseointegration and fixation of implants in autologous iliac bone grafts in ovariectomized rabbits. Bone 50(1):119–127PubMedCrossRefGoogle Scholar
  8. 8.
    Duarte PM, de Vasconcelos Gurgel BC, Sallum AW et al (2005) Alendronate therapy may be effective in the prevention of bone loss around titanium implants inserted in estrogen-deficient rats. J Periodontol 76(1):107–114PubMedCrossRefGoogle Scholar
  9. 9.
    Qi MC, Zhou XQ, Hu J et al (2004) Oestrogen replacement therapy promotes bone healing around dental implants in osteoporotic rats. Int J Oral Maxillofac Surg 33:279–285PubMedCrossRefGoogle Scholar
  10. 10.
    Maïmoun L, Brennan TC, Badoud I et al (2010) Strontium ranelate improves implant osseointegration. Bone 46(5):1436–1441PubMedCrossRefGoogle Scholar
  11. 11.
    Shirota T, Tashiro M, Ohno K et al (2003) Effect of intermittent parathyroid hormone (1-34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats. J Oral Maxillofac Surg 61:471–480PubMedCrossRefGoogle Scholar
  12. 12.
    Kimmel DB (2007) Mechanism of action, pharmacokinetic and pharmacodynamic profile, and clinical applications of nitrogen-containing bisphosphonates. J Dent Res 86(11):1022–1033PubMedCrossRefGoogle Scholar
  13. 13.
    Bone HG, Hosking D, Devogelaer JP et al (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350(12):1189–1199PubMedCrossRefGoogle Scholar
  14. 14.
    Rosen CJ, Hochberg MC, Bonnick SL et al (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20(1):141–151PubMedCrossRefGoogle Scholar
  15. 15.
    Viera-Negrón YE, Ruan WH, Winger JN et al (2008) Effect of ovariectomy and alendronate on implant osseointegration in rat maxillary bone. J Oral Implantol 34:76–82PubMedCrossRefGoogle Scholar
  16. 16.
    Chen BL, Xie DH, Zheng ZM et al (2011) Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats. Osteoporos Int 22(1):265–270PubMedCrossRefGoogle Scholar
  17. 17.
    Gasser JA, Ingold P, Venturiere A et al (2008) Long-term protective effects of zoledronic acid on cancellous and cortical bone in the ovariectomized rat. J Bone Miner Res 23(4):544–551PubMedCrossRefGoogle Scholar
  18. 18.
    Little DG, Smith NC, Williams PR et al (2003) Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis. J Bone Miner Res 18(7):1300–1307PubMedCrossRefGoogle Scholar
  19. 19.
    Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822PubMedCrossRefGoogle Scholar
  20. 20.
    Eastell R, Black DM, Boonen S et al (2009) Effect of once-yearly zoledronic acid five milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab 94(9):3215–3225PubMedCrossRefGoogle Scholar
  21. 21.
    Carvas JS, Pereira RM, Caparbo VF (2010) A single dose of zoledronic acid reverses the deleterious effects of glucocorticoids on titanium implant osseointegration. Osteoporos Int 21(10):1723–1729PubMedCrossRefGoogle Scholar
  22. 22.
    Prieto-Alhambra D, Javaid MK, Judge A et al (2011) Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ 343:d7222. doi: 10.1136/bmj.d7222 PubMedCrossRefGoogle Scholar
  23. 23.
    Hilding M, Aspenberg P (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop 77:912–916PubMedCrossRefGoogle Scholar
  24. 24.
    Friedl G, Radl R, Stihsen C et al (2009) The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind, controlled trial. J Bone Joint Surg Am 91:274–281PubMedCrossRefGoogle Scholar
  25. 25.
    Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis, treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–22PubMedCrossRefGoogle Scholar
  26. 26.
    Kanis JA, Johansson H, Oden A et al (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX(®). Osteoporos Int 22(8):2347–2355PubMedCrossRefGoogle Scholar
  27. 27.
    Roux C, Fechtenbaum J, Kolta S et al (2008) Strontium ranelate reduces the risk of vertebral fracture in young postmenopausal women with severe osteoporosis. Ann Rheum Dis 67(12):1736–1738PubMedCrossRefGoogle Scholar
  28. 28.
    Liu JM, Wai-Chee Kung A, Pheng CS et al (2009) Efficacy and safety of 2 g day of strontium ranelate in Asian women with postmenopausal osteoporosis. Bone 45(3):460–465PubMedCrossRefGoogle Scholar
  29. 29.
    Blake GM, Compston JE, Fogelman I (2009) Could strontium ranelate have a synergistic role in the treatment of osteoporosis? J Bone Miner Res 24(8):1354–1357PubMedCrossRefGoogle Scholar
  30. 30.
    Marie PJ, Hott M, Modrowski D et al (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615PubMedCrossRefGoogle Scholar
  31. 31.
    Reginster JY (2002) Strontium ranelate in osteoporosis. Curr Pharm Des 8(21):1907–1916PubMedCrossRefGoogle Scholar
  32. 32.
    Li Y, Feng G, Gao Y et al (2010) Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation inosteoporotic rats. J Orthop Res 28(5):578–582PubMedGoogle Scholar
  33. 33.
    Widler L, Jaeggi KA, Glatt M et al (2002) Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem 45(17):3721–3738PubMedCrossRefGoogle Scholar
  34. 34.
    National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals: Eighth Edition. National Academies, Washington (DC), p 248Google Scholar
  35. 35.
    Chen BL, Li YQ, Xie DH et al (2012) Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res 30(5):733–739PubMedCrossRefGoogle Scholar
  36. 36.
    Yildiz A, Esen E, Kürkçü M et al (2010) Effect of zoledronic acid on osseointegration of titanium implants: an experimental study in an ovariectomized rabbit model. J Oral Maxillofac Surg 68(3):515–23PubMedCrossRefGoogle Scholar
  37. 37.
    Linderbäck P, Agholme F, Wermelin K et al (2012) Weak effect of strontium on early implant fixation in rat tibia. Bone 50(1):350–356PubMedCrossRefGoogle Scholar
  38. 38.
    Yaffe A, Kollerman R, Bahar H et al (2003) The influence of alendronate on bone formation and resorption in a rat ectopic bone development model. J Periodontol 74(1):44–50PubMedCrossRefGoogle Scholar
  39. 39.
    Nijenhuis T, van der Eerden BC, Hoenderop JG et al (2008) Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice. J Bone Miner Res 23(11):1815–1824PubMedCrossRefGoogle Scholar
  40. 40.
    Bonnelye E, Chabadel A, Saltel F et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138PubMedCrossRefGoogle Scholar
  41. 41.
    Su Y, Bonet J, Deloffre P et al (1992) The strontium salt S12911 inhibits bone resorption in mouse calvaria and isolated rat osteoclast cultures. J Bone Miner Res 17(Sl):188Google Scholar
  42. 42.
    Licata AA (1997) Bisphosphonate therapy. Am JMed Sci 313(1):17–22CrossRefGoogle Scholar
  43. 43.
    Hadji P, Gamerdinger D, Spieler W et al (2012) Rapid Onset and Sustained Efficacy (ROSE) study: results of a randomised, multicentre trial comparing the effect of zoledronic acid or alendronate on bone metabolism in postmenopausal women with low bone mass. Osteoporos Int 23(2):625–633PubMedCrossRefGoogle Scholar
  44. 44.
    Saag K, Lindsay R, Kriegman A et al (2007) A single zoledronic acid infusion reduces bone resorption markers more rapidly than weekly oral alendronate in postmenopausal women with low bone mineral density. Bone 40(5):1238–1243PubMedCrossRefGoogle Scholar
  45. 45.
    Seedor JG, Quartuccio HA, Thompson DD (1991) The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 6(4):339–46PubMedCrossRefGoogle Scholar
  46. 46.
    Hansson U, Toksvig-Larsen S, Ryd L et al (2009) Once-weekly oral medication with alendronate does not prevent migration of knee prostheses: A double-blind randomized RSA study. Acta Orthop 80(1):41–45PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  1. 1.Department of Spine SurgeryThe First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  2. 2.Department of OrthopedicsGuangZhou Women and Children’s Medical CenterGuangzhouChina
  3. 3.The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina

Personalised recommendations