Osteoporosis International

, Volume 24, Issue 7, pp 1951–1963 | Cite as

Predictors of the rate of BMD loss in older men: findings from the CHAMP study

  • K. BleicherEmail author
  • R. G. Cumming
  • V. Naganathan
  • M. J. Seibel
  • F. M. Blyth
  • D. G. Le Couteur
  • D. J. Handelsman
  • H. M. Creasey
  • L. M. Waite
Original Article



Though bone loss tends to accelerate with age there are modifiable factors that may influence the rate of bone loss even in very old men.


The aim of this 2-year longitudinal study was to examine potential predictors of change in total hip bone mineral density (BMD) in older men.


The Concord Health and Ageing in Men Project is a population-based study in Sydney, Australia. For this study, 1,122 men aged 70–97 years had baseline and follow-up measures of total hip BMD measured with dual X-ray absorptiometry. Data about mobility, muscle strength, balance, medication use, cognition, medical history and lifestyle factors were collected using questionnaires and clinical assessments. Serum 25-hydroxyvitamin D [25(OH)D] was also measured. Multivariate linear regression models were used to assess relationships between baseline predictors and change in BMD.


Over a mean of 2.2 years, there was a mean annualised loss of total hip BMD of 0.006 g/cm2/year (0.6 %) and hip BMC of 0.14 g/year (0.3 %). Annual BMD loss accelerated with increasing age, from 0.4 % in men aged between 70 and 75 years, to 1.2 % in men aged 85+ years. In multivariate regression models, predictors of faster BMD loss were anti-androgen, thiazolidinedione and loop-diuretic medications, kidney disease, poor dynamic balance, larger hip bone area, older age and lower serum 25(OH)D. Factors associated with attenuated bone loss were walking for exercise and use of beta-blocker medications. Change in BMD was not associated with baseline BMD, smoking, alcohol consumption, BMI, frailty, or osteoarthritis.


There was considerable variation in the rate of hip bone loss in older men. Walking, better balance and beta blockers may attenuate the acceleration of BMD loss that occurs with age.


BMC loss Bone mineral density Epidemiology Longitudinal study Men Risk factors 



The CHAMP Study is funded by the Australian National Health and Medical Research Council (NHMRC project grant no. 301916) and the Ageing and Alzheimer’s Research Foundation (AARF). Many thanks to the scientists, Lynley Robinson and Beverly White, for assessing the scans and to the participants who have graciously given their time for this study.

Ethics approval

The CHAMP study was approved by the Concord Hospital Human Research Ethics Committee. Written and informed consent was given by all participants prior to their inclusion in the study.

Conflicts of interest



  1. 1.
    Gullberg B, Johnell O, Kanis J (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413PubMedCrossRefGoogle Scholar
  2. 2.
    Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21:1550–1556PubMedCrossRefGoogle Scholar
  3. 3.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  4. 4.
    Nguyen ND, Pongchaiyakul C, Center JR, Eisman JA, Nguyen TV (2005) Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res 20:1921–1928PubMedCrossRefGoogle Scholar
  5. 5.
    Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  6. 6.
    Henry M, Pasco J, Korn S, Gibson J, Kotowicz M, Nicholson G (2010) Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos Int 21:909–917PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshimura N, Kinoshita H, Danjoh S, Takijiri T, Morioka S, Kasamatsu T, Sakata K, Hashimoto T (2002) Bone loss at the lumbar spine and the proximal femur in a rural japanese community, 1990–2000: the Miyama Study. Osteoporos Int 13:803–808PubMedCrossRefGoogle Scholar
  8. 8.
    Melton LJ 3rd, Khosla S, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos Int 11:592–599PubMedCrossRefGoogle Scholar
  9. 9.
    Bakhireva LN, Barrett-Connor E, Kritz-Silverstein D, Morton DJ (2004) Modifiable predictors of bone loss in older men: a prospective study. Am J Prev Med 26:436–442PubMedCrossRefGoogle Scholar
  10. 10.
    Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC (2005) Racial differences in rate of decline in bone mass in older men: the Baltimore men’s osteoporosis study. J Bone Miner Res 20:1228–1234PubMedCrossRefGoogle Scholar
  11. 11.
    Cawthon PM, Ewing SK, McCulloch CE, Cauley J, Cummings S, Orwoll E (2009) Loss of hip BMD in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 24:1728–1735PubMedCrossRefGoogle Scholar
  12. 12.
    Kaptoge S, Reid DM, Scheidt-Nave C, Poor G, Pols HAP, Khaw KT, Felsenberg D, Benevolenskaya LI, Diaz MN, Stepan JJ, Eastell R, Boonen S, Cannata JB, Glueer CC, Crabtree NJ, Kaufman JM, Reeve J (2007) Geographic and other determinants of BMD change in European men and women at the hip and spine. A population-based study from the Network in Europe for Male Osteoporosis (NEMO). Bone 40:662–673PubMedCrossRefGoogle Scholar
  13. 13.
    Burger H, De Laet C, Van Daele P, Weel A, Witteman J, Hofman A, Pols H (1998) Risk factors for increased bone loss in an elderly population the rotterdam study. Am J Epidemiol 147:871PubMedCrossRefGoogle Scholar
  14. 14.
    Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112PubMedCrossRefGoogle Scholar
  15. 15.
    Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720PubMedCrossRefGoogle Scholar
  16. 16.
    Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, Bingham S, Khaw KT, Reeve J (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14:418–428PubMedCrossRefGoogle Scholar
  17. 17.
    Dennison E, Eastell R, Fall CH, Kellingray S, Wood PJ, Cooper C (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 10:384–391PubMedCrossRefGoogle Scholar
  18. 18.
    Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309:691–695PubMedCrossRefGoogle Scholar
  19. 19.
    Slemenda CW, Christian JC, Reed T, Reister TK, Williams CJ, Johnston CC (1992) Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern Med 117:286–291PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshimura N (2003) Predictive factors for bone loss. Clin Calcium 13:1003–1009PubMedGoogle Scholar
  21. 21.
    Dennison E, Yoshimura N, Hashimoto T, Cooper C (1998) Bone loss in Great Britain and Japan: a comparative longitudinal study. Bone 23:379–382PubMedCrossRefGoogle Scholar
  22. 22.
    Bleicher K, Cumming RG, Naganathan V, Seibel MJ, Sambrook PN, Blyth FM, Le Couteur D, Handelsman DJ, Creasey H, Waite L (2011) Lifestyle factors, medications and disease influence bone mineral density in older men: findings from the CHAMP study. Osteoporos Int 22:2421–2437PubMedCrossRefGoogle Scholar
  23. 23.
    National Health and Medical Research Council (2001) Australian Alcohol Guidelines: Health Risks and Benefits, vol. 2010. Commonwealth of Australia CanberraGoogle Scholar
  24. 24.
    Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA (1999) The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol 52:643–651PubMedCrossRefGoogle Scholar
  25. 25.
    Fried L, Tangen C, Walston J, Newman A, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop W, Burke G (2001) Frailty in older adults: evidence for a phenotype. Journals of Gerontology Series A: Biological and MedicalSciences 56:146CrossRefGoogle Scholar
  26. 26.
    Sherrington C, Lord SR (2005) Reliability of simple portable tests of physical performance in older people after hip fracture. Clin Rehabil 19:496–504PubMedCrossRefGoogle Scholar
  27. 27.
    Jorm AF (2004) The informant questionnaire on cognitive decline in the elderly (IQCODE): a review. Int Psychogeriatr 16:275–293PubMedCrossRefGoogle Scholar
  28. 28.
    Cauley JA, Lui LY, Barnes D, Ensrud KE, Zmuda JM, Hillier TA, Hochberg MC, Schwartz AV, Yaffe K, Cummings SR, Newman AB (2009) Successful skeletal aging: a marker of low fracture risk and longevity. The Study of Osteoporotic Fractures (SOF). J Bone Miner Res 24:134–143PubMedCrossRefGoogle Scholar
  29. 29.
    Lee H, McGovern K, Finkelstein JS, Smith MR (2005) Changes in bone mineral density and body composition during initial and long-term gonadotropin-releasing hormone agonist treatment for prostate carcinoma. Cancer 104:1633–1637PubMedCrossRefGoogle Scholar
  30. 30.
    Higano CS (2008) Androgen-deprivation-therapy-induced fractures in men with nonmetastatic prostate cancer: what do we really know. Nat Clin Pract Urol 5:24–34PubMedCrossRefGoogle Scholar
  31. 31.
    Melton LJ, Lieber MM, Atkinson EJ, Achenbach SJ, Zincke H, Therneau TM, Khosla S (2011) Fracture risk in men with prostate cancer: a population-based study. J Bone Miner Res 26:1808–1815PubMedCrossRefGoogle Scholar
  32. 32.
    Shahinian VB (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352:154–164PubMedCrossRefGoogle Scholar
  33. 33.
    Abrahamsen B, Nielsen MF, Eskildsen P, Andersen JT, Walter S, Brixen K (2007) Fracture risk in Danish men with prostate cancer: a nationwide register study. BJU Int 100:749–754PubMedCrossRefGoogle Scholar
  34. 34.
    Taylor LG, Canfield SE, Du XL (2009) Review of major adverse effects of androgen-deprivation therapy in men with prostate cancer. Cancer 115:2388–2399PubMedCrossRefGoogle Scholar
  35. 35.
    Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Can Med Assoc J 180:32–39CrossRefGoogle Scholar
  36. 36.
    Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142Google Scholar
  37. 37.
    Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Park SW, Lane NE, Harris TB, Cummings SR (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRefGoogle Scholar
  38. 38.
    Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576PubMedCrossRefGoogle Scholar
  39. 39.
    Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168:820–825PubMedCrossRefGoogle Scholar
  40. 40.
    Douglas IJ, Evans SJ, Pocock S, Smeeth L (2009) The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med 6:e1000154PubMedCrossRefGoogle Scholar
  41. 41.
    Mancini T, Mazziotti G, Doga M, Carpinteri R, Simetovic N, Vescovi PP, Giustina A (2009) Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45:784–788PubMedCrossRefGoogle Scholar
  42. 42.
    Cauley JA, Fullman RL, Stone KL, Zmuda JM, Bauer DC, Barrett-Connor E, Ensrud K, Lau EM, Orwoll ES (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16:1525–1537PubMedCrossRefGoogle Scholar
  43. 43.
    Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2011) Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 48:451–455PubMedCrossRefGoogle Scholar
  44. 44.
    Wiens M, Etminan M, Gill S, Takkouche B (2006) Effects of antihypertensive drug treatments on fracture outcomes: a meta analysis of observational studies. J Intern Med 260:350–362PubMedCrossRefGoogle Scholar
  45. 45.
    Reid I (2008) Effects of beta-blockers on fracture risk. J Musculoskelet Neuronal Interact 8:105–110PubMedGoogle Scholar
  46. 46.
    Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L (2006) Loop diuretics increase bone turnover and decrease bmd in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res 21:163–170PubMedCrossRefGoogle Scholar
  47. 47.
    Lim LS, Fink HA, Kuskowski MA, Taylor BC, Schousboe JT, Ensrud KE (2008) Loop diuretic use and increased rates of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Arch Intern Med 168:735PubMedCrossRefGoogle Scholar
  48. 48.
    Ishani A, Paudel M, Taylor B, Barrett-Connor E, Jamal S, Canales M, Steffes M, Fink H, Orwoll E, Cummings S, Ensrud K (2008) Renal function and rate of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Osteoporos Int 19:1549–1556PubMedCrossRefGoogle Scholar
  49. 49.
    Jassal SK, von Muhlen D, Barrett-Connor E (2007) Measures of renal function, BMD, bone loss, and osteoporotic fracture in older adults: the Rancho Bernardo Study. J Bone Miner Res 22:203–210PubMedCrossRefGoogle Scholar
  50. 50.
    Jamal SA, Swan VJD, Brown JP, Hanley DA, Prior JC, Papaioannou A, Langsetmo L, Josse RG (2010) Kidney function and rate of bone loss at the hip and spine: the Canadian multicentre osteoporosis study. American journal of kidney diseases: the official journal of the National Kidney Foundation 55:291–299CrossRefGoogle Scholar
  51. 51.
    Jamal SA (2010) Bone mass measurements in men and women with chronic kidney disease. Curr Opin Nephrol Hypertens 19:343–348PubMedCrossRefGoogle Scholar
  52. 52.
    Sheu Y, Cauley J, Wheeler V, Patrick A, Bunker C, Ensrud K, Orwoll E, Zmuda J (2010) Age-related decline in bone density among ethnically diverse older men. Osteoporosis International. 1–7Google Scholar
  53. 53.
    Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10:1778–1787PubMedCrossRefGoogle Scholar
  54. 54.
    Palombaro KM (2005) Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis. J Geriatr Phys Ther 28:102PubMedCrossRefGoogle Scholar
  55. 55.
    Shea B, Bonaiuti D, Iovine R, Negrini S, Robinson V, Kemper H, Wells G, Tugwell P, Cranney A (2004) Cochrane review on exercise for preventing and treating osteoporosis in postmenopausal women. Europa Medicophysica 40:199–210PubMedGoogle Scholar
  56. 56.
    Huuskonen J, Väisänen SB, Kröger H, Jurvelin JS, Alhava E, Rauramaa R (2001) Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middle-aged men. The DNASCO Study. Osteoporosis International 12:349–355PubMedCrossRefGoogle Scholar
  57. 57.
    Martyn-St James M, Carroll S (2008) Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 43:521–531PubMedCrossRefGoogle Scholar
  58. 58.
    Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, Simpson JM, Seibel MJ (2006) Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res 21:324–331PubMedCrossRefGoogle Scholar
  59. 59.
    Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaelsson K (2009) Simply ask them about their balance—future fracture risk in a nationwide cohort study of twins. Am J Epidemiol 169:143–149PubMedCrossRefGoogle Scholar
  60. 60.
    Bleicher K, Cumming R, Naganathan V, Seibel M, Sambrook P, Blyth F, Le Couteur D, Handelsman D, Creasey H, Waite L (2010) Lifestyle factors, medications, and disease influence bone mineral density in older men: findings from the CHAMP study. Osteoporos Int 22:2421–2437PubMedCrossRefGoogle Scholar
  61. 61.
    Knoke JD, Barrett-Connor E (2003) Weight loss: a determinant of hip bone loss in older men and women: the Rancho Bernardo study. Am J Epidemiol 158:1132–1138PubMedCrossRefGoogle Scholar
  62. 62.
    Prentice A, Parsons T, Cole T (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837PubMedGoogle Scholar
  63. 63.
    Cranney A, Horsley T, O’Donnell S, Weiler H, Puil L, Ooi D, Atkinson S, Ward L, Moher D, Hanley D (2007) Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess 158:1–235Google Scholar
  64. 64.
    Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, Lichtenstein A, Patel K, Raman G, Tatsioni A, Terasawa T, Trikalinos TA (2009) Vitamin D and calcium: Systematic review of health outcomes. Evidence Report/Technology Assessment No. 183. (Prepared by Tufts Evidence-based Practice Center under Contract No. 290-2007-10055-I). AHRQ Publication No. 09-E015, Rockville, MD:. Agency for Healthcare Research and QualityGoogle Scholar
  65. 65.
    Ensrud KE, Taylor BC, Paudel ML, Cauley JA, Cawthon PM, Cummings SR, Fink HA, Barrett-Connor E, Zmuda JM, Shikany JM, Orwoll ES (2009) Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab 94:2773–2780PubMedCrossRefGoogle Scholar
  66. 66.
    Pasco JA, Henry MJ, Nicholson GC, Brennan SL, Kotowicz MA (2009) Behavioural and physical characteristics associated with vitamin D status in women. Bone 44:1085–1091Google Scholar
  67. 67.
    Cranney A, Weiler HA, O’Donnell S, Puil L (2008) Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutr 88:513S–519SPubMedGoogle Scholar
  68. 68.
    Cumming RG, Handelsman D, Seibel MJ, Creasey H, Sambrook P, Waite L, Naganathan V, Le Couteur D, Litchfield M (2009) Cohort profile: the Concord Health and Ageing in Men Project (CHAMP). Int J Epidemiol 38:374–378PubMedCrossRefGoogle Scholar
  69. 69.
    Holden C, McLaclan R, Pitts M (2005) Men in australia telephone survey(mates): a national survey of the reproductive health and concerns of middle-aged and older Australian men. Lancet 366:218–224PubMedCrossRefGoogle Scholar
  70. 70.
    He Y, Davis JW, Ross PD, Wasnich RD (1993) Declining bone loss rate variability with increasing follow-up time. Bone Miner 21:119–128PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • K. Bleicher
    • 1
    Email author
  • R. G. Cumming
    • 2
  • V. Naganathan
    • 3
  • M. J. Seibel
    • 4
  • F. M. Blyth
    • 3
  • D. G. Le Couteur
    • 3
  • D. J. Handelsman
    • 4
  • H. M. Creasey
    • 3
  • L. M. Waite
    • 3
  1. 1.School of Public HealthUniversity of SydneyConcordAustralia
  2. 2.School of Public HealthUniversity of SydneySydneyAustralia
  3. 3.Centre for Education and Research on AgeingUniversity of SydneySydneyAustralia
  4. 4.ANZAC Research InstituteUniversity of SydneyConcordAustralia

Personalised recommendations