Osteoporosis International

, Volume 24, Issue 6, pp 1899–1908 | Cite as

A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women

  • A. A. WelchEmail author
  • A. J. MacGregor
  • J. Skinner
  • T. D. Spector
  • A. Moayyeri
  • A. Cassidy
Original Article



Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid–base load in muscle loss.


Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid–base load could influence loss of muscle mass.


We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height2), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18–79 years from the TwinsUK Study, and dietary acid–base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein.


Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m2 P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods.


We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.


Diet acid–base Load Fat-free mass Muscle Potential renal acid load (PRAL) Sarcopenia 



This work was supported in part by the Wellcome Trust, The Chronic Diseases Research Foundation and UEA research funding for dietary assessment.

Conflicts of interest



  1. 1.
    Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84(3):475–482PubMedGoogle Scholar
  2. 2.
    Beenakker KG, Ling CH, Meskers CG, de Craen AJ, Stijnen T, Westendorp RG, Maier AB (2010) Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res Rev 9(4):431–436. doi: 10.1016/j.arr.2010.05.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NE, Doehner W, Fearon KC, Ferrucci L, Hellerstein MK, Kalantar-Zadeh K, Lochs H, MacDonald N, Mulligan K, Muscaritoli M, Ponikowski P, Posthauer ME, Rossi Fanelli F, Schambelan M, Schols AM, Schuster MW, Anker SD (2010) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 11(6):391–396. doi: 10.1016/j.jamda.2010.04.014 PubMedCrossRefGoogle Scholar
  4. 4.
    Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6(2):99–105. doi: 10.1038/nrrheum.2009.260 PubMedCrossRefGoogle Scholar
  5. 5.
    Foundation IO (2010) Facts and statistics about osteoporosis and its impact. Accessed 14/01/11 2010
  6. 6.
    Bogl LH, Latvala A, Kaprio J, Sovijarvi O, Rissanen A, Pietilainen KH An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res 26 (1):79–87. doi: 10.1002/jbmr.192
  7. 7.
    MacInnis RJ, Cassar C, Nowson CA, Paton LM, Flicker L, Hopper JL, Larkins RG, Wark JD (2003) Determinants of bone density in 30- to 65-year-old women: a co-twin study. J Bone Miner Res 18(9):1650–1656. doi: 10.1359/jbmr.2003.18.9.1650 PubMedCrossRefGoogle Scholar
  8. 8.
    Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10(11):1762–1768. doi: 10.1002/jbmr.5650101120 PubMedCrossRefGoogle Scholar
  9. 9.
    Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12(12):2076–2081. doi: 10.1359/jbmr.1997.12.12.2076 PubMedCrossRefGoogle Scholar
  10. 10.
    Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssen I, Morley JE, Vellas B (2009) Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l'OSteoporose) Study. Am J Clin Nutr 89(6):1895–1900. doi: 10.3945/ajcn.2008.26950 PubMedCrossRefGoogle Scholar
  11. 11.
    Mitch WE (1996) Metabolic acidosis stimulates protein metabolism in uremia. Miner Electrolyte Metab 22(1–3):62–65PubMedGoogle Scholar
  12. 12.
    Workeneh BT, Rondon-Berrios H, Zhang L, Hu Z, Ayehu G, Ferrando A, Kopple JD, Wang H, Storer T, Fournier M, Lee SW, Du J, Mitch WE (2006) Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J Am Soc Nephrol 17(11):3233–3239. doi: 10.1681/ASN.2006020131 PubMedCrossRefGoogle Scholar
  13. 13.
    Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G (2010) A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol (Oxf) 73(5):581–587. doi: 10.1111/j.1365-2265.2010.03858.x CrossRefGoogle Scholar
  14. 14.
    Wackerhage H, Rennie MJ (2006) How nutrition and exercise maintain the human musculoskeletal mass. J Anat 208(4):451–458. doi: 10.1111/j.1469-7580.2006.00544.x PubMedCrossRefGoogle Scholar
  15. 15.
    Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87(5):1562S–1566S. doi: 87/5/1562S [pii] PubMedGoogle Scholar
  16. 16.
    Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL (2009) A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res 24(11):1827–1834. doi: 10.1359/jbmr.090513 PubMedCrossRefGoogle Scholar
  17. 17.
    Welch AA, Mulligan A, Bingham SA, Khaw KT (2008) Urine pH is an indicator of dietary acid–base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br J Nutr 99(6):1335–1343. doi: 10.1017/S0007114507862350 PubMedCrossRefGoogle Scholar
  18. 18.
    Remer T, Manz F (1995) Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 95(7):791–797. doi: 10.1016/S0002-8223(95)00219-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Frassetto LA, Todd KM, Morris RC Jr, Sebastian A (1998) Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr 68(3):576–583PubMedGoogle Scholar
  20. 20.
    Alexy U, Remer T, Manz F, Neu CM, Schoenau E (2005) Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 82(5):1107–1114PubMedGoogle Scholar
  21. 21.
    Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM (2005) Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81(4):923–933PubMedGoogle Scholar
  22. 22.
    New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robins SP, Reid DM (2004) Lower estimates of net endogenous non-carbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 79(1):131–138PubMedGoogle Scholar
  23. 23.
    Welch AA, Bingham SA, Reeve J, Khaw KT (2007) More acidic dietary acid–base load is associated with reduced calcaneal broadband ultrasound attenuation in women but not in men: results from the EPIC-Norfolk cohort study. Am J Clin Nutr 85(4):1134–1141PubMedGoogle Scholar
  24. 24.
    Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B (2009) Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 94(2):645–653. doi: 10.1210/jc.2008-1796 PubMedCrossRefGoogle Scholar
  25. 25.
    Frassetto L, Morris RC Jr, Sebastian A (1997) Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab 82(1):254–259PubMedCrossRefGoogle Scholar
  26. 26.
    Dawson-Hughes B, Harris SS, Ceglia L (2008) Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr 87(3):662–665PubMedGoogle Scholar
  27. 27.
    Workeneh BT, Mitch WE (2010) Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr 91(4):1128S–1132S. doi: 10.3945/ajcn.2010.28608B PubMedCrossRefGoogle Scholar
  28. 28.
    Cassidy A, Skidmore P, Rimm EB, Welch A, Fairweather-Tait S, Skinner J, Burling K, Richards JB, Spector TD, MacGregor AJ (2009) Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr 139(2):353–358. doi: 10.3945/jn.108.098681 PubMedGoogle Scholar
  29. 29.
    Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res 4(6):464–477PubMedGoogle Scholar
  30. 30.
    Teucher B, Skinner J, Skidmore PM, Cassidy A, Fairweather-Tait SJ, Hooper L, Roe MA, Foxall R, Oyston SL, Cherkas LF, Perks UC, Spector TD, MacGregor AJ (2007) Dietary patterns and heritability of food choice in a UK female twin cohort. Twin Res Hum Genet 10(5):734–748. doi: 10.1375/twin.10.5.734 PubMedCrossRefGoogle Scholar
  31. 31.
    Samaras K, Kelly PJ, Chiano MN, Spector TD, Campbell LV (1999) Genetic and environmental influences on total-body and central abdominal fat: the effect of physical activity in female twins. Ann Intern Med 130(11):873–882PubMedCrossRefGoogle Scholar
  32. 32.
    Kyle UG, Schutz Y, Dupertuis YM, Pichard C (2003) Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 19(7–8):597–604PubMedCrossRefGoogle Scholar
  33. 33.
    Welch AA, Luben R, Khaw KT, Bingham SA (2005) The CAFE computer program for nutritional analysis of the EPIC-Norfolk food frequency questionnaire and identification of extreme nutrient values. J Hum Nutr Diet 18(2):99–116. doi: 10.1111/j.1365-277X.2005.00593.x PubMedCrossRefGoogle Scholar
  34. 34.
    Agency FS (2002) McCance and Widdowson’s the composition of foods sixth summary edition. Royal Society of Chemistry, CambridgeGoogle Scholar
  35. 35.
    Otten JJ, Hellwig JP, Meyers LD (2006) DRI, dietary reference intakes: the essential guide to nutrient requirements. National Academies Press, Washington, D.CGoogle Scholar
  36. 36.
    Rennie KL, Coward A, Jebb SA (2007) Estimating under-reporting of energy intake in dietary surveys using an individualised method. Br J Nutr 97(6):1169–1176. doi: 10.1017/S0007114507433086 PubMedCrossRefGoogle Scholar
  37. 37.
    Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91(12):4836–4841. doi: 10.1210/jc.2006-0651 PubMedCrossRefGoogle Scholar
  38. 38.
    Szulc P, Duboeuf F, Marchand F, Delmas PD (2004) Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr 80(2):496–503PubMedGoogle Scholar
  39. 39.
    Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E (2003) Sarcopenia in elderly men and women: the Rancho Bernardo study. Am J Prev Med 25(3):226–231PubMedCrossRefGoogle Scholar
  40. 40.
    Petersen AM, Magkos F, Atherton P, Selby A, Smith K, Rennie MJ, Pedersen BK, Mittendorfer B (2007) Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab 293(3):E843–848. doi: 10.1152/ajpendo.00301.2007 PubMedCrossRefGoogle Scholar
  41. 41.
    Obisesan TO, Aliyu MH, Bond V, Adams RG, Akomolafe A, Rotimi CN (2005) Ethnic and age-related fat free mass loss in older Americans: the Third National Health and Nutrition Examination Survey (NHANES III). BMC Publ Health 5:41. doi: 10.1186/1471-2458-5-41 CrossRefGoogle Scholar
  42. 42.
    Li C, Ford ES, Zhao G, Balluz LS, Giles WH (2009) Estimates of body composition with dual-energy X-ray absorptiometry in adults. Am J Clin Nutr 90(6):1457–1465. doi: 10.3945/ajcn.2009.28141 PubMedCrossRefGoogle Scholar
  43. 43.
    Dey DK, Bosaeus I, Lissner L, Steen B (2009) Changes in body composition and its relation to muscle strength in 75-year-old men and women: a 5-year prospective follow-up study of the NORA cohort in Goteborg, Sweden. Nutrition 25(6):613–619. doi: 10.1016/j.nut.2008.11.023 PubMedCrossRefGoogle Scholar
  44. 44.
    Kyle UG, Melzer K, Kayser B, Picard-Kossovsky M, Gremion G, Pichard C (2006) Eight-year longitudinal changes in body composition in healthy Swiss adults. J Am Coll Nutr 25(6):493–501PubMedGoogle Scholar
  45. 45.
    Papadoyannakis NJ, Stefanidis CJ, McGeown M (1984) The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr 40(3):623–627PubMedGoogle Scholar
  46. 46.
    de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20(9):2075–2084. doi: 10.1681/ASN.2008111205 PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • A. A. Welch
    • 1
    Email author
  • A. J. MacGregor
    • 1
  • J. Skinner
    • 1
  • T. D. Spector
    • 2
  • A. Moayyeri
    • 2
  • A. Cassidy
    • 1
  1. 1.Department of Nutrition, Norwich Medical SchoolUniversity of East AngliaNorwichUK
  2. 2.Department of Twin Research & Genetic EpidemiologyKing’s College LondonLondonUK

Personalised recommendations