Osteoporosis International

, Volume 24, Issue 1, pp 339–347 | Cite as

Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients

  • S. Gamsjaeger
  • B. Hofstetter
  • E. Zwettler
  • R. Recker
  • J. A. Gasser
  • E. F. Eriksen
  • K. Klaushofer
  • E. P. Paschalis
Original Article



Once-yearly administration of intravenous zoledronic acid for 3 years in humans affects the kinetics of matrix filling in by mineral, independent of bone turnover.


Yearly 5-mg infusions of zoledronic acid (ZOL) for 3 years have shown pronounced antifracture efficacy. The purpose of the present study was to test whether ZOL affects the kinetics of forming bone material properties maturation.


Iliac crest biopsies from the HORIZON-PFT clinical trial were analyzed by Raman microspectroscopy in actively bone-forming surfaces as a function of tissue age in trabecular and osteonal bone, to determine ZOL’s effect on bone material quality indices maturation kinetics.


Mineral/matrix ratio increased in both groups as a function of tissue age, at both osteonal- and trabecular-forming surfaces; ZOL exhibiting the greatest increase in the trabecular surfaces only. The proteoglycan content showed a dependency on tissue age in both trabecular and osteonal surfaces, with ZOL exhibiting lower values in the tissue age 8–22 days in the trabecular surfaces. Mineral crystallinity (crystallite length and thickness) showed a dependence on tissue age, with ZOL exhibiting lower crystallite length compared with placebo only in the 8- to 22-day-old tissue at trabecular surfaces, while crystal thickness was lower in the 1- to 5-day-old tissue at both osteonal and trabecular surfaces.


The results of the present study suggest that once-yearly administration of intravenous ZOL for 3 years in humans does not exert any adverse effects on the evolution of bone material properties at actively forming osteonal and trabecular surfaces, while it may have a beneficial effect on the progression of the mineral-to-matrix ratio and mineral maturity bone quality indices.


Bisphosphonate Bone maturation Osteoporosis Raman spectroscopy Zoledronic acid 



The authors thank Novartis Pharma AG, Basel, Switzerland, for provision of the biopsy samples. This study was supported by the Allgemeine Unfallversicherungsanstalt (AUVA), research funds of the Austrian Workers' Compensation Board, the Wiener Gebietskrankenkasse (WGKK), Viennese Sickness Insurance Funds, and the Fonds zur Foederung der wissenschaftlichen Forschung (FWF project number P20646-B11).

Conflicts of interest

Dr. Recker consults for and/or receives research grants from Amgen, Eli Lilly, GlaxoSmithKline, Merck, Novartis, NPS Allelix, Procter & Gamble, Roche, and Sanofi-aventis. Dr. Eriksen consults and speaks for Novartis, Amgen, and Eli Lilly. Dr. Gasser is an employee of the Novartis Institute for BioMedical Research. Drs. Gamsjaeger, Hofstetter, Zwettler, Klaushofer, and Paschalis have no conflicts of interest.


  1. 1.
    Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627PubMedCrossRefGoogle Scholar
  2. 2.
    Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD (2006) Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf B Biointerfaces 50:1–8PubMedCrossRefGoogle Scholar
  3. 3.
    Chen L, Mccrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708PubMedCrossRefGoogle Scholar
  4. 4.
    Nebe B, Finke B, Luthen F, Bergemann C, Schroder K, Rychly J, Liefeith K, Ohl A (2007) Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng 24:447–454PubMedCrossRefGoogle Scholar
  5. 5.
    Shahryari A, Azari F, Vali H, Omanovic S (2009) The positive influence of electrochemical cyclic potentiodynamic passivation (cpp) of a ss316ls surface on its response to fibronectin and pre-osteoblasts. Phys Chem Chem Phys 11:6218–6224PubMedCrossRefGoogle Scholar
  6. 6.
    Smeets R, Kolk A, Gerressen M, Driemel O, Maciejewski O, Hermanns-Sachweh B, Riediger D, Stein JM (2009) A new biphasic osteoinductive calcium composite material with a negative zeta potential for bone augmentation. Head Face Med 5:13PubMedCrossRefGoogle Scholar
  7. 7.
    Smith IO, Baumann MJ, Mccabe LR (2004) Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res A 70:436–441PubMedCrossRefGoogle Scholar
  8. 8.
    Smith IO, Baumann MJ, Obadia L, Bouler JM (2004) Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. J Mater Sci Mater Med 15:841–846PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328PubMedCrossRefGoogle Scholar
  10. 10.
    Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRefGoogle Scholar
  11. 11.
    Hofstetter B, Gamsjaeger S, Phipps R, Recker R, Ebetino F, Klaushofer K, Paschalis E (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res 27:995–1003PubMedCrossRefGoogle Scholar
  12. 12.
    Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705PubMedCrossRefGoogle Scholar
  13. 13.
    Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241PubMedCrossRefGoogle Scholar
  14. 14.
    Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P, Hu H, Mesenbrink P, Hartl F, Gasser J, Eriksen EF (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23:6–16PubMedCrossRefGoogle Scholar
  15. 15.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822PubMedCrossRefGoogle Scholar
  16. 16.
    Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18PubMedCrossRefGoogle Scholar
  17. 17.
    Gamsjäger S, Kazanci M, Paschalis E, Fratzl P (2009) Raman spectroscopy for soft matter applications. In: Amer M (ed) Raman application in bone imaging. Wiley, Hoboken, pp 227–269Google Scholar
  18. 18.
    Juang C, Finzi L, Bustamante C (1988) Design and application of a computer-controlled confocal scanning differential polarization microscope. Rev Sci Instrum 59:2399–2408CrossRefGoogle Scholar
  19. 19.
    Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367PubMedCrossRefGoogle Scholar
  20. 20.
    Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JW, Klaushofer K, Paschalis EP, Fratzl P (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399PubMedCrossRefGoogle Scholar
  21. 21.
    Quiles F, Balandier JY, Capizzi-Banas S (2006) In situ characterisation of a microorganism surface by Raman microspectroscopy: the shell of Ascaris eggs. Anal Bioanal Chem 386:249–255PubMedCrossRefGoogle Scholar
  22. 22.
    Ellis R, Green E, Winlove CP (2009) Structural analysis of glycosaminoglycans and proteoglycans by means of Raman microspectrometry. Connect Tissue Res 50:29–36PubMedCrossRefGoogle Scholar
  23. 23.
    Koljenovic S, Bakker Schut TC, Van Meerbeeck JP, Maat AP, Burgers SA, Zondervan PE, Kros JM, Puppels GJ (2004) Raman microspectroscopic mapping studies of human bronchial tissue. J Biomed Opt 9:1187–1197PubMedCrossRefGoogle Scholar
  24. 24.
    Rieppo L, Rieppo J, Jurvelin JS, Saarakkala S (2012) Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage. PLoS One 7:E32344PubMedCrossRefGoogle Scholar
  25. 25.
    Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359PubMedCrossRefGoogle Scholar
  26. 26.
    Bullough P (1992) Atlas of orthopaedic pathology. Gower, New YorkGoogle Scholar
  27. 27.
    Einhorn TA (1996) The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, New YorkGoogle Scholar
  28. 28.
    Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348PubMedCrossRefGoogle Scholar
  29. 29.
    Paschalis EP (2009) Fourier transform infrared analysis and bone. Osteoporos Int 20:1043–1047PubMedCrossRefGoogle Scholar
  30. 30.
    Boskey AL, Pleshko N, Doty SB, Mendelsohn R (1992) Applications of Fourier transform infrared (FT-IR) microscopy to the study of mineralization in bone and cartilage. Cells And Materials 2:209–220Google Scholar
  31. 31.
    Donnelly E, Chen DX, Boskey AL, Baker SP, Van Der Meulen MC (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:450–460PubMedCrossRefGoogle Scholar
  32. 32.
    Ebetino F, Cornish J, Phipps R, Keck B, Reid I, Callon K (2010) Relative uptake of risedronate in trabecular and cortical bone. Bone 46:70CrossRefGoogle Scholar
  33. 33.
    Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305PubMedCrossRefGoogle Scholar
  34. 34.
    Mochida Y, Duarte WR, Tanzawa H, Paschalis EP, Yamauchi M (2003) Decorin modulates matrix mineralization in vitro. Biochem Biophys Res Commun 305:6–9PubMedCrossRefGoogle Scholar
  35. 35.
    Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466PubMedCrossRefGoogle Scholar
  36. 36.
    Grzesik WJ, Frazier CR, Shapiro JR, Sponseller PD, Robey PG, Fedarko NS (2002) Age-related changes in human bone proteoglycan structure. Impact of osteogenesis imperfecta. J Biol Chem 277:43638–43647PubMedCrossRefGoogle Scholar
  37. 37.
    Boskey AL, Dicarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038PubMedCrossRefGoogle Scholar
  38. 38.
    Paschalis EP, Betts F, Dicarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61:487–492PubMedCrossRefGoogle Scholar
  39. 39.
    Jager I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746PubMedCrossRefGoogle Scholar
  40. 40.
    Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445PubMedCrossRefGoogle Scholar
  41. 41.
    Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16PubMedCrossRefGoogle Scholar
  42. 42.
    Paschalis EP, Dicarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487PubMedGoogle Scholar
  43. 43.
    Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3po4 domain. Calcif Tissue Int 49:383–388PubMedCrossRefGoogle Scholar
  44. 44.
    Henneman ZJ, Nancollas GH, Ebetino FH, Russell RG, Phipps RJ (2008) Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro. J Biomed Mater Res A 85:993–1000PubMedGoogle Scholar
  45. 45.
    Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res 9:1541–1549PubMedCrossRefGoogle Scholar
  46. 46.
    Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • S. Gamsjaeger
    • 1
  • B. Hofstetter
    • 1
  • E. Zwettler
    • 1
  • R. Recker
    • 2
  • J. A. Gasser
    • 3
  • E. F. Eriksen
    • 4
  • K. Klaushofer
    • 1
  • E. P. Paschalis
    • 1
  1. 1.Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical DepartmentHanusch HospitalViennaAustria
  2. 2.Osteoporosis Research CenterCreighton UniversityOmahaUSA
  3. 3.Novartis Institutes for BioMedical ResearchBaselSwitzerland
  4. 4.HormonlaboratorietAUS Aker Universitetssykehus TrondheimsveienOsloNorway

Personalised recommendations