Advertisement

Osteoporosis International

, Volume 23, Supplement 8, pp 841–846 | Cite as

Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis

  • M. Mahjoub
  • F. BerenbaumEmail author
  • X. Houard
Bone Quality Seminars: Subchondral Bone

Abstract

Osteoarthritis is a whole joint disease characterised by the disappearance of the cartilage associated with subchondral bone sclerosis, formation of osteophytes and a mild inflammation of the synovial membrane. Although all these events have been independently studied, functional interactions between these different joint tissues should exist, especially between subchondral bone and cartilage. Moreover, recent studies show that cartilage and subchondral bone act as a single functional unit. This review highlights this novel concept.

Keywords

Hypertrophic chondrocytes Osteoarthritis Subchondral bone Vascular channels 

Notes

Acknowledgments

Dr. M. Majhoub was supported by an Articulum Fellowship grant. These studies were supported by the Société Française de Rhumatologie and Arthritis Fondation Courtin.

Conflicts of interest

FB has received an honorarium for participating in a workshop sponsored by Servier.

References

  1. 1.
    Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377:2115–2126PubMedCrossRefGoogle Scholar
  2. 2.
    Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438PubMedCrossRefGoogle Scholar
  3. 3.
    Fawns HT, Landells JW (1953) Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann Rheum Dis 12:105–113PubMedCrossRefGoogle Scholar
  4. 4.
    Berenbaum F, Jacques C, Thomas G, Corvol MT, Bereziat G, Masliah J (1996) Synergistic effect of interleukin-1 beta and tumor necrosis factor alpha on PGE2 production by articular chondrocytes does not involve PLA2 stimulation. Exp Cell Res 222:379–384PubMedCrossRefGoogle Scholar
  5. 5.
    Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C (2006) Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Res Ther 8:R135PubMedCrossRefGoogle Scholar
  6. 6.
    Gosset M, Pigenet A, Salvat C, Berenbaum F, Jacques C (2010) Inhibition of matrix metalloproteinase-3 and −13 synthesis induced by IL-1beta in chondrocytes from mice lacking microsomal prostaglandin E synthase-1. J Immunol 185:6244–6252PubMedCrossRefGoogle Scholar
  7. 7.
    Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40:135–163PubMedCrossRefGoogle Scholar
  8. 8.
    Pfander D, Rahmanzadeh R, Scheller EE (1999) Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 26:386–394PubMedGoogle Scholar
  9. 9.
    Kirsch T, Swoboda B, Nah H (2000) Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthr Cartil 8:294–302PubMedCrossRefGoogle Scholar
  10. 10.
    Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y, Rutsch F, Schafer FK, Niggemeyer O, Steinhagen J, Lohmann CH, Pap T, Ruther W (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60:2694–2703PubMedCrossRefGoogle Scholar
  11. 11.
    Pullig O, Weseloh G, Ronneberger D, Kakonen S, Swoboda B (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 67:230–240PubMedCrossRefGoogle Scholar
  12. 12.
    Jiang J, Leong NL, Mung JC, Hidaka C, Lu HH (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr Cartil 16:70–82PubMedCrossRefGoogle Scholar
  13. 13.
    Radin EL, Rose, RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 34–40Google Scholar
  14. 14.
    Dieppe P, Cushnaghan J, Young P, Kirwan J (1993) Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 52:557–563PubMedCrossRefGoogle Scholar
  15. 15.
    Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong le T (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206PubMedCrossRefGoogle Scholar
  16. 16.
    Botter SM, Glasson SS, Hopkins B, Clockaerts S, Weinans H, van Leeuwen JP, van Osch GJ (2009) ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthr Cartil 17:636–645PubMedCrossRefGoogle Scholar
  17. 17.
    Oettmeier R, Arokoski J, Roth AJ, Helminen HJ, Tammi M, Abendroth K (1992) Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training. J Bone Miner Res 7(Suppl 2):S419–S424PubMedCrossRefGoogle Scholar
  18. 18.
    Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 41:891–899PubMedCrossRefGoogle Scholar
  19. 19.
    Hopwood B, Tsykin A, Findlay DM, Fazzalari NL (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 9:R100PubMedCrossRefGoogle Scholar
  20. 20.
    Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455PubMedCrossRefGoogle Scholar
  21. 21.
    Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ (1997) Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 40:1282–1291PubMedGoogle Scholar
  22. 22.
    Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthr Cartil 13:979–987PubMedCrossRefGoogle Scholar
  23. 23.
    Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr Cartil 17:473–481PubMedCrossRefGoogle Scholar
  24. 24.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62PubMedCrossRefGoogle Scholar
  25. 25.
    Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708–714PubMedCrossRefGoogle Scholar
  26. 26.
    Guevremont M, Martel-Pelletier J, Massicotte F, Tardif G, Pelletier JP, Ranger P, Lajeunesse D, Reboul P (2003) Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HgF: potential implication of osteoblasts on the presence of HGF in cartilage. J Bone Miner Res 18:1073–1081PubMedCrossRefGoogle Scholar
  27. 27.
    Lyons TJ, McClure SF, Stoddart RW, McClure J (2006) The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord 7:52PubMedCrossRefGoogle Scholar
  28. 28.
    Malinin T, Ouellette EA (2000) Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthr Cartil 8:483–491PubMedCrossRefGoogle Scholar
  29. 29.
    Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59:272–278PubMedGoogle Scholar
  30. 30.
    Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF (2007) Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthr Cartil 15:743–751PubMedCrossRefGoogle Scholar
  31. 31.
    Shibakawa A, Yudoh K, Masuko-Hongo K, Kato T, Nishioka K, Nakamura H (2005) The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthr Cartil 13:679–687PubMedCrossRefGoogle Scholar
  32. 32.
    Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA (2007) Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 66:1423–1428PubMedCrossRefGoogle Scholar
  33. 33.
    Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung UI, Kawaguchi H (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum 54:2462–2470PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  1. 1.UR4 “Ageing, Stress and Inflammation”Université Pierre et Marie CurieParis Cedex 5France
  2. 2.Department of RheumatologyAP-HP Saint-Antoine HospitalParisFrance

Personalised recommendations