Osteoporosis International

, Volume 24, Issue 3, pp 969–978 | Cite as

Treatment of hydrogen molecule abates oxidative stress and alleviates bone loss induced by modeled microgravity in rats

  • Y. Sun
  • F. Shuang
  • D. M. Chen
  • R. B. Zhou
Original Article



Treatment with molecular hydrogen alleviates microgravity-induced bone loss through abating oxidative stress, restoring osteoblastic differentiation, and suppressing osteoclast differentiation and osteoclastogenesis.


Recently, it has been suggested that hydrogen gas exerts a therapeutic antioxidant activity by selectively reducing cytotoxic reactive oxygen species (ROS). The aim of the present study was to elucidate whether treatment with molecular hydrogen alleviated bone loss induced by modeled microgravity in rats.


Hindlimb suspension (HLS) and rotary wall vessel bioreactor were used to model microgravity in vivo and in vitro, respectively. Sprague–Dawley rats were exposed to HLS for 6 weeks to induced bone loss and simultaneously administrated with hydrogen water (HW). Then, we investigated the effects of incubation with hydrogen-rich medium (HRM) on MC3T3-E1 and RAW264.7 cells exposed to modeled microgravity.


Treatment with HW alleviated HLS-induced reduction of bone mineral density, ultimate load, stiffness, and energy in femur and lumbar vertebra. Treatment with HW alleviated HLS-induced augmentation of malondialdehyde content and peroxynitrite content and reduction of total sulfhydryl content in femur and lumbar vertebra. In cultured MC3T3-E1 cells, incubation with HRM inhibited modeled microgravity-induced ROS formation, reduction of osteoblastic differentiation, increase of ratio of receptor activator of nuclear factor kappa B ligand to osteoprotegerin, inducible nitric oxide synthetase upregulation, and Erk1/2 phosphorylation. In cultured RAW264.7, incubation with HRM aggravated modeled microgravity-induced ROS formation, osteoclastic differentiation, and osteoclastogenesis.


Treatment with molecular hydrogen alleviates microgravity-induced bone loss in rats. Molecular hydrogen could thus be envisaged as a nutritional countermeasure for spaceflight but remains to be tested in humans.


Bone loss Hydrogen molecule Microgravity Osteoblastic differentiation Osteoclast differentiation Oxidative stress 


Conflicts of interest


Supplementary material

198_2012_2028_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 56 kb)


  1. 1.
    Blanc S, Normand S, Ritz P, Pachiaudi C, Vico L, Gharib C, Gauquelin-Koch G (1998) Energy and water metabolism, body composition, and hormonal changes induced by 42 days of enforced inactivity and simulated weightlessness. J Clin Endocrinol Metab 83:4289–4297PubMedCrossRefGoogle Scholar
  2. 2.
    Fowler JF Jr (1991) Physiological changes during spaceflight. Cutis 48:291–295PubMedGoogle Scholar
  3. 3.
    Vernikos J (1996) Human physiology in space. BioEssays 18:1029–1037PubMedCrossRefGoogle Scholar
  4. 4.
    Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773PubMedCrossRefGoogle Scholar
  5. 5.
    Vico L, Lafage-Proust MH, Alexandre C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S–100SPubMedCrossRefGoogle Scholar
  6. 6.
    Kim H, Iwasaki K, Miyake T, Shiozawa T, Nozaki S, Yajima K (2003) Changes in bone turnover markers during 14-day 6 degrees head-down bed rest. J Bone Miner Metab 21:311–315PubMedCrossRefGoogle Scholar
  7. 7.
    Rai B, Kaur J, Catalina M, Anand SC, Jacobs R, Teughels W (2011) Effect of simulated microgravity on salivary and serum oxidants, antioxidants, and periodontal status. J Periodontol 82:1478–1482PubMedCrossRefGoogle Scholar
  8. 8.
    Chen HL, Qu LN, Li QD, Bi L, Huang ZM, Li YH (2009) Simulated microgravity-induced oxidative stress in different areas of rat brain. Sheng Li Xue Bao 61:108–114PubMedGoogle Scholar
  9. 9.
    Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch G, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 25:3646–3660PubMedCrossRefGoogle Scholar
  10. 10.
    Shagimardanova EI, Gusev OA, Sychev VN, Levinskikh MA, Sharipova MR, Il'inskaia ON, Bingham G, Sugimoto M (2010) Stress response genes expression analysis of barley Hordeum vulgare under space flight environment. Mol Biol (Mosk) 44:831–838CrossRefGoogle Scholar
  11. 11.
    Bradamante S, Villa A, Versari S, Barenghi L, Orlandi I, Vai M (2010) Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae. Biochim Biophys Acta 1803:1376–1385PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J, Zhang J, Bai S, Wang G, Mu L, Sun B, Wang D, Kong Q, Liu Y, Yao X, Xu Y, Li H (2009) Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells. Neurochem Int 55:710–716PubMedCrossRefGoogle Scholar
  13. 13.
    Linnane AW, Eastwood H (2006) Cellular redox regulation and prooxidant signaling systems, a new perspective on the free radical theory of aging. Ann N Y Acad Sci 1067:47PubMedCrossRefGoogle Scholar
  14. 14.
    Sendur OF, Turan Y, Tastaban E, Serter M (2009) Antioxidant status in patients with osteoporosis, a controlled study. Joint Bone Spine 76:514PubMedCrossRefGoogle Scholar
  15. 15.
    Kondo H, Yumoto K, Alwood JS, Mojarrab R, Wang A, Almeida EA, Searby ND, Limoli CL, Globus RK (2010) Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol 108:152–161PubMedCrossRefGoogle Scholar
  16. 16.
    Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL, Wactawski-Wende J (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588PubMedGoogle Scholar
  17. 17.
    Talaulikar VS, Chambers T, Manyonda I (2012) Exploiting the antioxidant potential of a common vitamin: could vitamin C prevent postmenopausal osteoporosis? J Obstet Gynaecol Res 38:253–257PubMedCrossRefGoogle Scholar
  18. 18.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694PubMedCrossRefGoogle Scholar
  19. 19.
    Zayzafoon M, Gathings WE, McDonald JM (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinol 145:2421–2432CrossRefGoogle Scholar
  20. 20.
    Mosekilde L, Danielsen CC, Knudsen UB (1993) The effects of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 14:1–6PubMedCrossRefGoogle Scholar
  21. 21.
    Katsumata T, Nakamura T, Ohnishi H, Sakurawa T (1995) Intermittent cyclical etidronate treatment maintains the mass, structure and the mechanical property of bone in ovariectomized rats. J Bone Miner Res 10:921–931PubMedCrossRefGoogle Scholar
  22. 22.
    Elks CM, Mariappan N, Haque M, Guggilam A, Majid DS, Francis J (2009) Chronic NF-kB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 296:F298–305PubMedCrossRefGoogle Scholar
  23. 23.
    Saxena R, Pan G, Dohm ED, McDonald JM (2011) Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL mediated osteoclastogenesis. J Bone Miner Metab 29:111–122PubMedCrossRefGoogle Scholar
  24. 24.
    Hollander J, Gore M, Fiebig R, Mazzeo R, Ohishi S, Ohno H, Ji LL (1998) Spaceflight downregulates antioxidant defense systems in rat liver. Free Radic Biol Med 24:385–390PubMedCrossRefGoogle Scholar
  25. 25.
    Reich KA, Chen YW, Thompson PD, Hoffman EP, Clarkson PM (2012) Forty-eight hours of unloading and 24 h of reloading lead to changes in global gene expression patterns related to ubiquitination and oxidative stress in humans. J Appl Physiol 109:1404–1415CrossRefGoogle Scholar
  26. 26.
    Al-Ajmi N, Braidman IP, Moore D (1996) Effect of clinostat rotation on differentiation of embryonic bone in vitro. Adv Space Res 17:189–192PubMedCrossRefGoogle Scholar
  27. 27.
    Nakamura H, Kumei Y, Morita S, Shimokawa H, Ohya K, Shinomiya K (2003) Suppression of osteoblastic phenotypes and modulation of pro- and anti-apoptotic features in normal human osteoblastic cells under a vector-averaged gravity condition. J Med Dent Sci 50:167–176PubMedGoogle Scholar
  28. 28.
    Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H (2000) Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res 15:489–498PubMedCrossRefGoogle Scholar
  29. 29.
    Qian A, Di S, Gao X, Zhang W, Tian Z, Li J, Hu L, Yang P, Yin D, Shang P (2009) cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim Biophys Sin 41:561–577PubMedCrossRefGoogle Scholar
  30. 30.
    Rucci N, Rufo A, Alamanou M, Teti A (2007) Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem 100:464–473PubMedCrossRefGoogle Scholar
  31. 31.
    Boehrs J, Zaharias RS, Laffoon J, Ko YJ, Schneider GB (2008) Three-dimensional culture environments enhance osteoblast differentiation. J Prosthodont 17:517–521PubMedCrossRefGoogle Scholar
  32. 32.
    Makihira S, Kawahara Y, Yuge L, Mine Y, Nikawa H (2008) Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol Int 32:1176–1181PubMedCrossRefGoogle Scholar
  33. 33.
    Ontiveros C, McCabe LR (2003) Simulated microgravity suppresses osteoblast phenotype, Runx2 levels and AP-1 transactivation. J Cell Biochem 88:427–437PubMedCrossRefGoogle Scholar
  34. 34.
    Pardo SJ, Patel MJ, Sykes MC, Platt MO, Boyd NL, Sorescu GP, Xu M, van Loon JJ, Wang MD, Jo H (2005) Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol 288:C1211–1121PubMedCrossRefGoogle Scholar
  35. 35.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRefGoogle Scholar
  36. 36.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRefGoogle Scholar
  37. 37.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang R, Ran HH, Ma J, Bai YG, Lin LJ (2012) NAD(P)H oxidase inhibiting with apocynin improved vascular reactivity in tail-suspended hindlimb unweighting rat. J Physiol Biochem 68:99–105PubMedCrossRefGoogle Scholar
  39. 39.
    Wang MT, Huang Z, Yang R, Su J, Mai YX, Zhou HC, Deng WM (2010) Disruption of the microfilament cytoskeleton induced by simulated microgravity affects NO/NOS system of osteoblasts. Nan Fang Yi Ke Da Xue Xue Bao 30:1658–1662PubMedGoogle Scholar
  40. 40.
    Yan L, Yinghui T, Bo Y, Gang Z, Xian X, Lu Z (2011) Effect of calcitonin gene-related peptide on nitric oxide production in osteoblasts: an experimental study. Cell Biol Int 35:757–765PubMedCrossRefGoogle Scholar
  41. 41.
    Chen RM, Chen TL, Chiu WT, Chang CC (2005) Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 23:462–468PubMedCrossRefGoogle Scholar
  42. 42.
    Park BG, Yoo CI, Kim HT, Kwon CH, Kim YK (2005) Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicol 215:115–125CrossRefGoogle Scholar
  43. 43.
    Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  1. 1.Department of EmergencyThe Military General Hospital of Beijing PLABeijingChina
  2. 2.Department of Orthopaedics94 Hospital of PLANanchangChina

Personalised recommendations