Osteoporosis International

, Volume 24, Issue 3, pp 991–998 | Cite as

Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case–control study

  • L. M. Del Rio
  • R. Winzenrieth
  • C. Cormier
  • S. Di Gregorio
Original Article

Abstract

Summary

Bone mineral density (BMD) as assessed by dual energy X-ray absorptiometry (DXA) constitutes the gold standard for osteoporosis diagnosis. However, DXA does not take into account bone microarchitecture alterations.

Introduction

The aim of our study was to evaluate the ability of trabecular bone score (TBS) at lumbar spine to discriminate subjects with hip fracture.

Methods

We presented a case–control study of 191 Spanish women aged 50 years and older. Women presented transcervical fractures only. BMD was measured at lumbar spine (LS-BMD) using a Prodigy densitometer. TBS was calculated directly on the same spine image. Descriptive statistics, tests of difference and univariate and multivariate backward regressions were used. Odds ratio (OR) and the ROC curve area of discriminating parameters were calculated.

Results

The study population consisted of 83 subjects with a fracture and 108 control subjects. Significant lower spine and hip BMD and TBS values were found for subjects with fractures (p < 0.0001). Correlation between LS-BMD and spine TBS was modest (r = 0.41, p < 0.05). LS-BMD and TBS independently discriminate fractures equally well (OR = 2.21 [1.56–3.13] and 2.05 [1.45–2.89], respectively) but remain lower than BMD at neck or at total femur (OR = 5.86 [3.39–10.14] and 6.06 [3.55–10.34], respectively). After adjusting for age, LS-BMD and TBS remain significant for transcervical fracture discrimination (OR = 1.94 [1.35–2.79] and 1.71 [1.15–2.55], respectively). TBS and LS-BMD combination (OR = 2.39[1.70-3.37]) improved fracture risk prediction by 25 %.

Conclusion

This study shows the potential of TBS to discriminate subjects with and without hip fracture. TBS and LS-BMD combination improves fracture risk prediction. Nevertheless, BMD at hip remains the best predictor of hip fracture.

Keywords

Bone microarchitecture Bone mineral density Hip fracture TBS (trabecular bone score) 

Notes

Acknowledgments

We would like to give special thanks to Helene Ward for orthographic and grammatical corrections of the manuscript.

Conflicts of interest

Renaud Winzenrieth was a consultant for Med-Imaps.

References

  1. 1.
    WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  2. 2.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289PubMedCrossRefGoogle Scholar
  3. 3.
    NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  4. 4.
    Johnell O, Kanis JA, Oden E, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ, O'Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  5. 5.
    Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21:155–168PubMedCrossRefGoogle Scholar
  6. 6.
    Compston J (2009) Monitoring osteoporosis treatment. Best Pract Res Clin Rheumatol 23(6):781–788PubMedCrossRefGoogle Scholar
  7. 7.
    Hordon LD, Raisi M, Paxton S, Beneton MM, Kanis JA, Aaron JE (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: Part I. 2-D histology. Bone 27:271–276PubMedCrossRefGoogle Scholar
  8. 8.
    McClung MR (2006) Do current management strategies and guidelines adequately address fracture risk? Bone 38(S2):13–17CrossRefGoogle Scholar
  9. 9.
    Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261PubMedCrossRefGoogle Scholar
  10. 10.
    Frost HM (1963) Bone remodeling dynamics. Henry Ford Hospital Surgical Monograph. Springfield, Charles C. ThomasGoogle Scholar
  11. 11.
    Glüer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14(11):1952–1962PubMedCrossRefGoogle Scholar
  12. 12.
    Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, Orimo H (2005) Multidetector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20(10):1828–1836PubMedCrossRefGoogle Scholar
  13. 13.
    Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmüller EM, Majumdar S, Link TM (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29(2):246–253PubMedCrossRefGoogle Scholar
  14. 14.
    Riggs BL, 3rd Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRefGoogle Scholar
  15. 15.
    Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20(3):445–453PubMedCrossRefGoogle Scholar
  16. 16.
    Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24(3):468–474PubMedCrossRefGoogle Scholar
  17. 17.
    Piveteau T, Winzenrieth R, Hans D (2011) Trabecular bone score (TBS) the new parameter of 2D texture analysis for the evaluation of 3D bone micro architecture status. J Clin Densitom 14(2):169Google Scholar
  18. 18.
    Winzenrieth R, Piveteau T, Hans D (2011) Assessment of correlations between 3D μCT microarchitecture parameters and TBS: effects of resolution and correlation with TBS DXA measurements. J Clin Densitom 14(2):169Google Scholar
  19. 19.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312PubMedCrossRefGoogle Scholar
  20. 20.
    Pothuaud L, Barthe N, Krieg M-A, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of TBS to complement BMD in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case–control study. J Clin Densitom 12:170–176PubMedCrossRefGoogle Scholar
  21. 21.
    Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46(1):176–181PubMedCrossRefGoogle Scholar
  22. 22.
    Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86(2):104–109PubMedCrossRefGoogle Scholar
  23. 23.
    Colson F, Winzenrieth R (2011) Assessment of osteopenic women microarchitecture with and without osteoporotic fracture by TBS on a new generation bone densitometer. J Clin Densitom 14(2):169CrossRefGoogle Scholar
  24. 24.
    Hans D, Goertzen A, Krieg MA, Leslie W (2011) Bone micro-architecture assessed by tbs predicts hip, clinical spine and all osteoporotic fractures independently of BMD in 22234 women aged 50 and older: the Manitoba Prospective Study. J Bone Miner Res 26(11):2762–2769PubMedCrossRefGoogle Scholar
  25. 25.
    Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2011) Trabecular bone score helps classifying women at risk of fracture: a prospective analysis within the OFELY Study. Osteoporos Int 22(S1):S362Google Scholar
  26. 26.
    Breban S, Kolta S, Briot K, Paternotte S, Ghazi M, Fechtenbaum J, Dougados M, Roux C (2010) Combination of bone mineral density and trabecular bone score for vertebral fracture prediction in secondary osteoporosis. J Bone Miner Res 25(S1):S188Google Scholar
  27. 27.
    Maury E, Guignat L, Winzenrieth R, Cormier C (2005) BMD and TBS microarchitecture parameter assessment at spine in patient with anorexia nervosa. J Bone Miner Res 25(S1):S86Google Scholar
  28. 28.
    Colson F, Picard A, Rabier B, Vignon E (2009) Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine?: a TBS evaluation. J Bone Miner Res 24(S1):129Google Scholar
  29. 29.
    Kanis JA, Glüer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11(3):192–202PubMedCrossRefGoogle Scholar
  30. 30.
    Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864PubMedCrossRefGoogle Scholar
  31. 31.
    Eastell R, Mosekilde L, Hodgson SF, Riggs BL (1990) Proportion of human vertebral body bone that is cancellous. J Bone Miner Res 5:1237–1241PubMedCrossRefGoogle Scholar
  32. 32.
    Bell KL, Garrahan N, Kneissel M, Loveridge N, Grau E, Stanton M, Reeve J (1996) Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system. Bone 19(5):541–548PubMedCrossRefGoogle Scholar
  33. 33.
    Alonso CG, Curiel MD, Carranza FH, Cano RP, Peréz AD (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 11(8):714–720PubMedCrossRefGoogle Scholar
  34. 34.
    Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40(1):169–174PubMedCrossRefGoogle Scholar
  35. 35.
    Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–733PubMedGoogle Scholar
  36. 36.
    Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8(3):247–254PubMedCrossRefGoogle Scholar
  37. 37.
    Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23(12):1892–1904PubMedCrossRefGoogle Scholar
  38. 38.
    Thomas CD, Mayhew PM, Power J, Poole KE, Loveridge N, Clement JG, Burgoyne CJ, Reeve J (2009) Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res 24(11):1808–1818PubMedCrossRefGoogle Scholar
  39. 39.
    Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A, National Osteoporosis Guideline Group (2008) Case finding for the management of osteoporosis with FRAX—assessment and intervention thresholds for the UK. Osteoporos Int 19(10):1395–1408PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • L. M. Del Rio
    • 1
  • R. Winzenrieth
    • 2
    • 4
  • C. Cormier
    • 3
  • S. Di Gregorio
    • 1
  1. 1.CETIR Grup MèdicBarcelonaSpain
  2. 2.Med-Imaps-Plateforme Technologique d’Innovation Biomédicale (PTIB)Hôpital Xavier ArnozanPessacFrance
  3. 3.Service de Rheumatology A, Hospital CochinAPHPParisFrance
  4. 4.Research Department, Med-Imaps, PTIBHôpital X. ArnozanPessacFrance

Personalised recommendations