Osteoporosis International

, Volume 23, Issue 6, pp 1653–1663 | Cite as

Osteoblastogenesis regulation signals in bone remodeling

  • C. Zuo
  • Y. Huang
  • R. Bajis
  • M. Sahih
  • Y.-P. Li
  • K. Dai
  • X. Zhang
Review

Abstract

Bone remodeling is essential for adult bone homeostasis. The failure of this process often leads to the development of osteoporosis, a present major global health concern. The most important factor that affects normal bone remodeling is the tightly controlled and orchestrated regulation of osteoblasts and osteoclasts. The present review summarized the recent discoveries related to osteoblast regulation from several signals, including transforming growth factor-β, bone morphogenetic proteins, Wnt signal, Notch, Eph–Ephrin interaction, parathyroid hormone/parathyroid hormone-related peptide, and the leptin–serotonin–sympathetic nervous systemic pathway. The awareness of these mechanisms will facilitate further research that explores bone remodeling and osteoporosis. Future investigations on the endogenous regulation of osteoblastogenesis will increase the current knowledge required for the development of potential drug targets in the treatment of osteoporosis.

Keywords

Bone remodeling Osteoblastogenesis Signals 

Notes

Acknowledgements

This work was supported by grants from The Ministry of Science and Technology of China (no. 2011DFA30790, 2010CB945600), grants from the National Natural Science Foundation of China (no. 81190133, 30871435), grants from the Chinese Academy of Sciences (no. XDA01030404, KSCX2-EW-Q-1-07), grant from the Science and Technology Commission of Shanghai Municipality (no. 11QH1401600), and grants from the Shanghai Municipal Education Commission (grant no. J50206, 10SG22).

Conflicts of interest

None.

References

  1. 1.
    Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6:99–105PubMedCrossRefGoogle Scholar
  2. 2.
    Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRefGoogle Scholar
  3. 3.
    Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428PubMedCrossRefGoogle Scholar
  4. 4.
    Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582PubMedCrossRefGoogle Scholar
  5. 5.
    Chambers TJ, Fuller K (1985) Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J Cell Sci 76:155–165PubMedGoogle Scholar
  6. 6.
    Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90PubMedCrossRefGoogle Scholar
  7. 7.
    Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396PubMedCrossRefGoogle Scholar
  8. 8.
    Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774PubMedCrossRefGoogle Scholar
  9. 9.
    Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene 357:1–8PubMedCrossRefGoogle Scholar
  10. 10.
    Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 23:87–93PubMedCrossRefGoogle Scholar
  11. 11.
    Atti E, Gomez S, Wahl SM, Mendelsohn R, Paschalis E, Boskey AL (2002) Effects of transforming growth factor-beta deficiency on bone development: a Fourier transform-infrared imaging analysis. Bone 31:675–684PubMedCrossRefGoogle Scholar
  12. 12.
    Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670PubMedGoogle Scholar
  13. 13.
    Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 11:409–414PubMedCrossRefGoogle Scholar
  14. 14.
    Borton AJ, Frederick JP, Datto MB, Wang XF, Weinstein RS (2001) The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res 16:1754–1764PubMedCrossRefGoogle Scholar
  15. 15.
    Hock JM, Canalis E, Centrella M (1990) Transforming growth factor-beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 126:421–426PubMedCrossRefGoogle Scholar
  16. 16.
    Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563PubMedCrossRefGoogle Scholar
  17. 17.
    Seitz PK, Zhu BT, Cooper CW (1992) Effect of transforming growth factor beta on parathyroid hormone receptor binding and cAMP formation in rat osteosarcoma cells. J Bone Miner Res 7:541–546PubMedCrossRefGoogle Scholar
  18. 18.
    Wu Y, Kumar R (2000) Parathyroid hormone regulates transforming growth factor beta1 and beta2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res 15:879–884PubMedCrossRefGoogle Scholar
  19. 19.
    Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X (2010) TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol 12:224–234PubMedGoogle Scholar
  20. 20.
    Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105PubMedCrossRefGoogle Scholar
  21. 21.
    Pfeilschifter J, Mundy GR (1987) Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 84:2024–2028PubMedCrossRefGoogle Scholar
  22. 22.
    Erlebacher A, Derynck R (1996) Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 132:195–210PubMedCrossRefGoogle Scholar
  23. 23.
    Erlebacher A, Filvaroff EH, Ye JQ, Derynck R (1998) Osteoblastic responses to TGF-beta during bone remodeling. Mol Biol Cell 9:1903–1918PubMedGoogle Scholar
  24. 24.
    Tang Y, Wu X, Lei W et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765PubMedCrossRefGoogle Scholar
  25. 25.
    Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899PubMedCrossRefGoogle Scholar
  26. 26.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534PubMedCrossRefGoogle Scholar
  27. 27.
    Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao M, Harris SE, Horn D, Geng Z, Nishimura R, Mundy GR, Chen D (2002) Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 157:1049–1060PubMedCrossRefGoogle Scholar
  29. 29.
    Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241PubMedCrossRefGoogle Scholar
  30. 30.
    Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235PubMedCrossRefGoogle Scholar
  31. 31.
    Devlin RD, Du Z, Pereira RC, Kimble RB, Economides AN, Jorgetti V, Canalis E (2003) Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 144:1972–1978PubMedCrossRefGoogle Scholar
  32. 32.
    Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E (2005) Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology 146:655–665PubMedCrossRefGoogle Scholar
  33. 33.
    Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209PubMedCrossRefGoogle Scholar
  34. 34.
    Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedCrossRefGoogle Scholar
  35. 35.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521PubMedCrossRefGoogle Scholar
  36. 36.
    Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314PubMedCrossRefGoogle Scholar
  37. 37.
    Babij P, Zhao W, Small C et al (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974PubMedCrossRefGoogle Scholar
  38. 38.
    Holmen SL, Giambernardi TA, Zylstra CR et al (2004) Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 19:2033–2040PubMedCrossRefGoogle Scholar
  39. 39.
    Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750PubMedCrossRefGoogle Scholar
  40. 40.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738PubMedCrossRefGoogle Scholar
  41. 41.
    Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102:3324–3329PubMedCrossRefGoogle Scholar
  42. 42.
    Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60PubMedCrossRefGoogle Scholar
  43. 43.
    Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668PubMedCrossRefGoogle Scholar
  44. 44.
    Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 102:17406–17411PubMedCrossRefGoogle Scholar
  45. 45.
    Glass DA 2nd, Bialek P, Ahn JD et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764PubMedCrossRefGoogle Scholar
  46. 46.
    Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634PubMedCrossRefGoogle Scholar
  47. 47.
    Li X, Ominsky MS, Niu QT et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869PubMedCrossRefGoogle Scholar
  48. 48.
    Li X, Ominsky MS, Warmington KS et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588PubMedCrossRefGoogle Scholar
  49. 49.
    Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 18:1222–1237PubMedCrossRefGoogle Scholar
  50. 50.
    Bodine PV, Stauffer B, Ponce-de-Leon H et al (2009) A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 44:1063–1068PubMedCrossRefGoogle Scholar
  51. 51.
    Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934–945PubMedCrossRefGoogle Scholar
  52. 52.
    Glantschnig H, Hampton RA, Lu P et al (2010) Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 285:40135–40147PubMedCrossRefGoogle Scholar
  53. 53.
    Canalis E (2008) Notch signaling in osteoblasts. Sci Signal 1:pe17PubMedCrossRefGoogle Scholar
  54. 54.
    Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89:629–639PubMedCrossRefGoogle Scholar
  55. 55.
    Li L, Krantz ID, Deng Y et al (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:243–251PubMedCrossRefGoogle Scholar
  56. 56.
    Oda T, Elkahloun AG, Pike BL et al (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242PubMedCrossRefGoogle Scholar
  57. 57.
    Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, Krumlauf R, Hattersley AT, Ellard S, Turnpenny PD (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24:438–441PubMedCrossRefGoogle Scholar
  58. 58.
    Engin F, Yao Z, Yang T et al (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305PubMedCrossRefGoogle Scholar
  59. 59.
    Hilton MJ, Tu X, Wu X et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedCrossRefGoogle Scholar
  60. 60.
    Matsuo K (2010) Eph and ephrin interactions in bone. Adv Exp Med Biol 658:95–103PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121PubMedCrossRefGoogle Scholar
  62. 62.
    Allan EH, Hausler KD, Wei T et al (2008) EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 23:1170–1181PubMedCrossRefGoogle Scholar
  63. 63.
    Xing W, Kim J, Wergedal J, Chen ST, Mohan S (2010) Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1. Mol Cell Biol 30:711–721PubMedCrossRefGoogle Scholar
  64. 64.
    Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K (2009) Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284:14637–14644PubMedCrossRefGoogle Scholar
  65. 65.
    Goltzman D (2008) Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch Biochem Biophys 473:218–224PubMedCrossRefGoogle Scholar
  66. 66.
    Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441PubMedCrossRefGoogle Scholar
  67. 67.
    Chen P, Miller PD, Delmas PD, Misurski DA, Krege JH (2006) Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 21:1785–1790PubMedCrossRefGoogle Scholar
  68. 68.
    Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215PubMedCrossRefGoogle Scholar
  69. 69.
    Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ (2005) One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. N Engl J Med 353:555–565PubMedCrossRefGoogle Scholar
  70. 70.
    Lindsay R, Zhou H, Cosman F, Nieves J, Dempster DW, Hodsman AB (2007) Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res 22:495–502PubMedCrossRefGoogle Scholar
  71. 71.
    Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM (2000) Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1-34, parathyroid hormone-related protein 1-36, and SDZ-parathyroid hormone 893. J Bone Miner Res 15:1517–1525PubMedCrossRefGoogle Scholar
  72. 72.
    Horwitz MJ, Tedesco MB, Gundberg C, Garcia-Ocana A, Stewart AF (2003) Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88:569–575PubMedCrossRefGoogle Scholar
  73. 73.
    Miao D, He B, Karaplis AC, Goltzman D (2002) Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109:1173–1182PubMedGoogle Scholar
  74. 74.
    Amizuka N, Karaplis AC, Henderson JE et al (1996) Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev Biol 175:166–176PubMedCrossRefGoogle Scholar
  75. 75.
    Miao D, He B, Jiang Y et al (2005) Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest 115:2402–2411PubMedCrossRefGoogle Scholar
  76. 76.
    Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM (1999) Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 104:399–407PubMedCrossRefGoogle Scholar
  77. 77.
    Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R, Schipani E (2001) Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107:277–286PubMedCrossRefGoogle Scholar
  78. 78.
    Datta NS, Abou-Samra AB (2009) PTH and PTHrP signaling in osteoblasts. Cell Signal 21:1245–1254PubMedCrossRefGoogle Scholar
  79. 79.
    Juppner H, Abou-Samra AB, Freeman M et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024–1026PubMedCrossRefGoogle Scholar
  80. 80.
    Nishida S, Yamaguchi A, Tanizawa T, Endo N, Mashiba T, Uchiyama Y, Suda T, Yoshiki S, Takahashi HE (1994) Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15:717–723PubMedCrossRefGoogle Scholar
  81. 81.
    Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK (2007) Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 22:951–964PubMedCrossRefGoogle Scholar
  82. 82.
    Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 104:439–446PubMedCrossRefGoogle Scholar
  83. 83.
    Dobnig H, Turner RT (1995) Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136:3632–3638PubMedCrossRefGoogle Scholar
  84. 84.
    Canalis E, Centrella M, Burch W, McCarthy TL (1989) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83:60–65PubMedCrossRefGoogle Scholar
  85. 85.
    Bikle DD, Sakata T, Leary C, Elalieh H, Ginzinger D, Rosen CJ, Beamer W, Majumdar S, Halloran BP (2002) Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res 17:1570–1578PubMedCrossRefGoogle Scholar
  86. 86.
    Wang Y, Nishida S, Boudignon BM, Burghardt A, Elalieh HZ, Hamilton MM, Majumdar S, Halloran BP, Clemens TL, Bikle DD (2007) IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res 22:1329–1337PubMedCrossRefGoogle Scholar
  87. 87.
    Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158PubMedCrossRefGoogle Scholar
  88. 88.
    Kramer I, Loots GG, Studer A, Keller H, Kneissel M (2010) Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res 25:178–189PubMedCrossRefGoogle Scholar
  89. 89.
    Dempster DW, Hughes-Begos CE, Plavetic-Chee K et al (2005) Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 95:139–148PubMedCrossRefGoogle Scholar
  90. 90.
    Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–3561PubMedCrossRefGoogle Scholar
  91. 91.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  92. 92.
    Elefteriou F, Takeda S, Ebihara K et al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101:3258–3263PubMedCrossRefGoogle Scholar
  93. 93.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedCrossRefGoogle Scholar
  94. 94.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRefGoogle Scholar
  95. 95.
    Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815PubMedCrossRefGoogle Scholar
  96. 96.
    Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRefGoogle Scholar
  97. 97.
    Rejnmark L, Vestergaard P, Kassem M, Christoffersen BR, Kolthoff N, Brixen K, Mosekilde L (2004) Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 75:365–372PubMedCrossRefGoogle Scholar
  98. 98.
    Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC (2005) beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 20:613–618PubMedCrossRefGoogle Scholar
  99. 99.
    Balthasar N, Coppari R, McMinn J et al (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991PubMedCrossRefGoogle Scholar
  100. 100.
    Yadav VK, Oury F, Suda N et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989PubMedCrossRefGoogle Scholar
  101. 101.
    Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837PubMedCrossRefGoogle Scholar
  102. 102.
    Yadav VK, Balaji S, Suresh PS et al (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16:308–312PubMedCrossRefGoogle Scholar
  103. 103.
    Cui Y, Niziolek PJ, MacDonald BT et al (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • C. Zuo
    • 1
  • Y. Huang
    • 2
  • R. Bajis
    • 3
  • M. Sahih
    • 3
  • Y.-P. Li
    • 4
  • K. Dai
    • 1
    • 2
  • X. Zhang
    • 1
    • 2
  1. 1.The Key Laboratory of Stem Cell Biology, Institute of Health SciencesShanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS)ShanghaiChina
  2. 2.Shanghai Key Laboratory of Orthopaedic Implant, Department of OrthopaedicsShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Centre of Orthopaedic Research, School of Surgery and PathologyUniversity of Western AustraliaPerthAustralia
  4. 4.Department of PathologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations