Advertisement

Osteoporosis International

, Volume 23, Issue 8, pp 2227–2237 | Cite as

Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study

  • J. ValtueñaEmail author
  • L. Gracia-Marco
  • G. Vicente-Rodríguez
  • M. González-Gross
  • I. Huybrechts
  • J. P. Rey-López
  • T. Mouratidou
  • I. Sioen
  • M. I. Mesana
  • A. E. Díaz Martínez
  • K. Widhalm
  • L. A. Moreno
  • on behalf of the HELENA Study Group
Original Article

Abstract

Summary

The effects of vitamin D concentrations on bone mineral content in adolescents are still unclear. Vitamin D and physical activity (PA) may interact to determine bone mineral content (BMC) in two possible directions; 25(OH)D sufficiency levels improve BMC only in active adolescents, or PA increases BMC in individuals with replete vitamin D levels.

Introduction

The effects of suboptimal 25-hydroxycholecalciferol (25(OH)D) concentrations on BMC in adolescents are still unclear. The main aim of this study was to evaluate the influence of 25(OH)D on BMC in adolescents, considering the effect of body composition, sex, age, Tanner stage, season, calcium and vitamin D intakes, physical fitness and PA.

Methods

Serum 25(OH)D concentrations, anthropometric measurements, dual energy X-ray absorptiometry measurements, calcium and vitamin D intakes, PA and physical fitness were obtained in 100 Spanish adolescents (47 males), aged 12.5–17.5 years, within the framework of the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Relations were examined using ANCOVA and regression analyses including BMC as dependent variable.

Results

Linear regression of BMC suggested that 25(OH)D concentrations independently influenced total and leg BMC after controlling for age, sex, lean mass, seasonality and calcium intake (B = 0.328, p < 0.05, and B = 0.221, p < 0.05, respectively) in the physically active group. No significant influence of 25(OH)D concentrations on BMC was observed in the inactive group. Significant effect was shown between the interaction of 25(OH)D and PA on BMC for the total body and legs (both p < 0.05).

Conclusions

Vitamin D and PA may interact to determine BMC. 25(OH)D sufficiency levels improve bone mass only in active adolescents, or PA has a positive influence on BMC in individuals with replete vitamin D levels.

Keywords

Adolescents Bone Calcium Physical activity Physical fitness Vitamin D 

Notes

Acknowledgements

The HELENA Study has taken place with the financial support of the European Community Sixth RTD Framework Programme (contract FOOD-CT-2005-007034). The content of this article reflects only the authors' views, and the European Community is not liable for any use that may be made of the information contained therein. Additional support was gotten from the Spanish Ministry of Education (AGL2007-29784-E/ALI; AP-2005-3827). Jara Valtueña is financially supported by the Universidad Politécnica de Madrid (CH/018/2008). Isabelle Sioen is financially supported by the Research Foundation-Flanders (grant no. 1.2.683.11.N.00). Many thanks to Adelheid Schuch for her contribution to laboratory work and to Laura Barrios for statistical assistance.

Conflicts of interest

None.

References

  1. 1.
    Ferrari SL (2005) Osteoporosis: a complex disorder of aging with multiple genetic and environmental determinants. Nutr Fit Ment Health, Aging, Implement Healthy Diet Phys Act Lifestyle 95:35–51CrossRefGoogle Scholar
  2. 2.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733PubMedCrossRefGoogle Scholar
  3. 3.
    Baroncelli GI, Bertelloni S, Sodini F, Saggese G (2005) Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs 7:295–323PubMedCrossRefGoogle Scholar
  4. 4.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305PubMedCrossRefGoogle Scholar
  5. 5.
    Vicente-Rodriguez G, Ezquerra J, Mesana MI, Fernandez-Alvira JM, Rey-Lopez JP, Casajus JA, Moreno LA (2008) Independent and combined effect of nutrition and exercise on bone mass development. J Bone Miner Metab 26:416–424PubMedCrossRefGoogle Scholar
  6. 6.
    Chan GM (1991) Dietary calcium and bone-mineral status of children and adolescents. Am J Dis Child 145:631–634PubMedGoogle Scholar
  7. 7.
    Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80:1678S–1688SPubMedGoogle Scholar
  8. 8.
    Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ (2004) Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 158:531–537PubMedCrossRefGoogle Scholar
  9. 9.
    Cashman KD (2002) Calcium intake, calcium bioavailability and bone health. Br J Nutr 87:S169–S177PubMedCrossRefGoogle Scholar
  10. 10.
    Zerwekh JE (2008) Blood biomarkers of vitamin D status. Am J Clin Nutr 87:1087s–1091sPubMedGoogle Scholar
  11. 11.
    Valtueña J, Breidenassel C, Folle J, Gonzalez-Gross M (2011) Retinol, beta-carotene, alpha-tocopherol and vitamin D status in European adolescents; regional differences an variability: a review. Nutr Hosp 26:280–288PubMedGoogle Scholar
  12. 12.
    Gonzalez-Gross M, Valtuena J, Breidenassel C, Moreno LA, Ferrari M, Kersting M, De Henauw S, Gottrand F, Azzini E, Widhalm K, Kafatos A, Manios Y, Stehle P (2011) Vitamin D status among adolescents in Europe: the healthy lifestyle in Europe by nutrition in adolescence study. Br J Nutr 1–10 (in press)Google Scholar
  13. 13.
    Standing Committee on the Scientific Evaluation of Dietary Reference Intakes FaNB, Institute of Medicine (2011) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D and fluoride. National Academy Press, WashingtonGoogle Scholar
  14. 14.
    Cranney A, Weiler HA, O’Donnell S, Puil L (2008) Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutr 88:513S–519SPubMedGoogle Scholar
  15. 15.
    Gracia-Marco LV-RG, Casajus JA, Molnar D, Castillo MJ, Moreno LA (2011) Effect of fitness and physical activity on bone mass in adolescents: the HELENA Study. Eur J Appl Physiol 11:2671–2680CrossRefGoogle Scholar
  16. 16.
    Calbet JAL, Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone 33:853–859PubMedCrossRefGoogle Scholar
  17. 17.
    Gracia-Marco L, Moreno LA, Ortega FB, Leon F, Sioen I, Kafatos A, Martinez-Gomez D, Widhalm K, Castillo MJ, Vicente-Rodriguez G, Grp HS (2011) Levels of physical activity that predict optimal bone mass in adolescents: the HELENA Study. Am J Prev Med 40:599–607PubMedCrossRefGoogle Scholar
  18. 18.
    Moreno LA, Gonzalez-Gross M, Kersting M, Molnar D, de Henauw S, Beghin L, Sjostrom M, Hagstromer M, Manios Y, Gilbert CC, Ortega FB, Dallongeville J, Arcella D, Warnberg J, Hallberg M, Fredriksson H, Maes L, Widhalm K, Kafatos AG, Marcos A (2008) Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 11:288–299PubMedCrossRefGoogle Scholar
  19. 19.
    Moreno LA, De Henauw S, Gonzalez-Gross M, Kersting M, Molnar D, Gottrand F, Barrios L, Sjostrom M, Manios Y, Gilbert CC, Leclercq C, Widhalm K, Kafatos A, Marcos A (2008) Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int J Obes (Lond) 32(Suppl 5):S4–11CrossRefGoogle Scholar
  20. 20.
    Beghin L, Castera M, Manios Y, Gilbert CC, Kersting M, De Henauw S, Kafatos A, Gottrand F, Molnar D, Sjostrom M, Leclercq C, Widhalm K, Mesana MI, Moreno LA, Libersa C (2008) Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA cross-sectional study. Int J Obes (Lond) 32(Suppl 5):S12–18CrossRefGoogle Scholar
  21. 21.
    Nagy E, Vicente-Rodriguez G, Manios Y, Beghin L, Iliescu C, Censi L, Dietrich S, Ortega FB, De Vriendt T, Plada M, Moreno LA, Molnar D (2008) Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond) 32(Suppl 5):S58–65CrossRefGoogle Scholar
  22. 22.
    Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179PubMedCrossRefGoogle Scholar
  23. 23.
    Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP (2001) High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 33:1682–1687PubMedCrossRefGoogle Scholar
  24. 24.
    Gracia-Marco L, Vicente-Rodriguez G, Valtuena J, Rey-Lopez JP, Diaz Martinez AE, Mesana MI, Widhalm K, Ruiz JR, Gonzalez-Gross M, Castillo MJ, Moreno LA (2010) Bone mass and bone metabolism markers during adolescence: the HELENA Study. Horm Res Paediatr 74:339–350PubMedCrossRefGoogle Scholar
  25. 25.
    Vereecken CA, Covents M, Sichert-Hellert W, Alvira JM, Le Donne C, De Henauw S, De Vriendt T, Phillipp MK, Beghin L, Manios Y, Hallstrom L, Poortvliet E, Matthys C, Plada M, Nagy E, Moreno LA (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes (Lond) 32(Suppl 5):S26–34CrossRefGoogle Scholar
  26. 26.
    Haubrock J, Nothlings U, Volatier JL, Dekkers A, Ocke M, Harttig U, Illner AK, Knuppel S, Andersen LF, Boeing H (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-potsdam calibration study. J Nutr 141:914–920PubMedCrossRefGoogle Scholar
  27. 27.
    Ekelund U, Anderssen SA, Froberg K, Sardinha LB, Andersen LB, Brage S (2007) Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study. Diabetologia 50:1832–1840PubMedCrossRefGoogle Scholar
  28. 28.
    Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F (2005) Evidence based physical activity for school-age youth. J Pediatr 146:732–737PubMedCrossRefGoogle Scholar
  29. 29.
    Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-Rodriguez G, Moreno LA, Manios Y, Beghin L, Ottevaere C, Ciarapica D, Sarri K, Dietrich S, Blair SN, Kersting M, Molnar D, Gonzalez-Gross M, Gutierrez A, Sjostrom M, Castillo MJ, Grp HS (2011) Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med 45:20–29PubMedCrossRefGoogle Scholar
  30. 30.
    Ortega FB, Artero EG, Ruiz JR, Vicente-Rodriguez G, Bergman P, Hagstromer M, Ottevaere C, Nagy E, Konsta O, Rey-Lopez JP, Polito A, Dietrich S, Plada M, Beghin L, Manios Y, Sjostrom M, Castillo MJ (2008) Reliability of health-related physical fitness tests in European adolescents. The HELENA Study. Int J Obes (Lond) 32(Suppl 5):S49–57CrossRefGoogle Scholar
  31. 31.
    Gonzalez-Gross M, Breidenassel C, Gomez-Martinez S, Ferrari M, Beghin L, Spinneker A, Diaz LE, Maiani G, Demailly A, Al-Tahan J, Albers U, Warnberg J, Stoffel-Wagner B, Jimenez-Pavon D, Libersa C, Pietrzik K, Marcos A, Stehle P (2008) Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int J Obes (Lond) 32(Suppl 5):S66–75CrossRefGoogle Scholar
  32. 32.
    Racinais S, Hamilton B, Li CK, Grantham J (2010) Vitamin D and physical fitness in Qatari girls. Arch Dis Child 95:854–855PubMedCrossRefGoogle Scholar
  33. 33.
    Lehtonen-Veromaa MKMT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76:8Google Scholar
  34. 34.
    Outila TA, Karkkainen MU, Lamberg-Allardt CJ (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74:206–210PubMedGoogle Scholar
  35. 35.
    LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J (1999) Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA 281:1505–1511PubMedCrossRefGoogle Scholar
  36. 36.
    Greene DA, Naughton GA, Briody JN, Kemp A, Woodhead H, Corrigan L (2005) Bone strength index in adolescent girls: does physical activity make a difference? Br J Sports Med 39:622–627PubMedCrossRefGoogle Scholar
  37. 37.
    Saggese G, Baroncelli GI, Bertelloni S (2002) Puberty and bone development. Best Pract Res Clin Endocrinol Metab 16:53–64PubMedCrossRefGoogle Scholar
  38. 38.
    Vicente-Rodriguez G, Urzanqui A, Mesana MI, Ortega FB, Ruiz JR, Ezquerra J, Casajus JA, Blay G, Blay VA, Gonzalez-Gross M, Moreno LA (2008) Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross-sectional study. J Bone Miner Metab 26:288–294PubMedCrossRefGoogle Scholar
  39. 39.
    Constantini NW, Dubnov-Raz G, Chodick G, Rozen GS, Giladi A, Ish-Shalom S (2010) Physical activity and bone mineral density in adolescents with vitamin D deficiency. Med Sci Sports Exerc 42:646–650PubMedGoogle Scholar
  40. 40.
    Foo LH, Zhang Q, Zhu K, Ma G, Hu X, Greenfield H, Fraser DR (2009) Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr 139:1002–1007PubMedCrossRefGoogle Scholar
  41. 41.
    Okuno J, Tomura S, Yabushita N, Kim MJ, Okura T, Tanaka K, Yanagi H (2010) Effects of serum 25-hydroxyvitamin D(3) levels on physical fitness in community-dwelling frail women. Arch Gerontol Geriatr 50:121–126PubMedCrossRefGoogle Scholar
  42. 42.
    Bartoszewska M, Kamboj M, Patel DR (2010) Vitamin D, muscle function, and exercise performance. Pediatr Clin North Am 57:849–861PubMedCrossRefGoogle Scholar
  43. 43.
    Calbet JA, Moysi JS, Dorado C, Rodriguez LP (1998) Bone mineral content and density in professional tennis players. Calcif Tissue Int 62:491–496PubMedCrossRefGoogle Scholar
  44. 44.
    Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2009) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20:315–322PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2012

Authors and Affiliations

  • J. Valtueña
    • 1
    • 2
    Email author
  • L. Gracia-Marco
    • 3
    • 4
  • G. Vicente-Rodríguez
    • 3
    • 4
  • M. González-Gross
    • 1
    • 5
  • I. Huybrechts
    • 2
  • J. P. Rey-López
    • 3
    • 4
  • T. Mouratidou
    • 3
    • 4
  • I. Sioen
    • 2
    • 6
  • M. I. Mesana
    • 3
    • 4
  • A. E. Díaz Martínez
    • 7
  • K. Widhalm
    • 8
  • L. A. Moreno
    • 3
    • 4
  • on behalf of the HELENA Study Group
  1. 1.Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences–INEFTechnical University of MadridMadridSpain
  2. 2.Department of Public HealthGhent UniversityGhentBelgium
  3. 3.GENUD (Growth, Exercise, Nutrition and Development) Research GroupZaragozaSpain
  4. 4.School of Health Sciences (EUCS)University of ZaragozaZaragozaSpain
  5. 5.Institut für Ernährungs-und Lebensmittelwissenschaften, HumanernährungRheinische Friedrich-Wilhelms UniversitätBonnGermany
  6. 6.FWOResearch Foundation FlandersBrusselsBelgium
  7. 7.Clinical LaboratorySport Medicine Center, Consejo Superior de DeportesMadridSpain
  8. 8.Division of Clinical Nutrition and Prevention, Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations