Advertisement

Osteoporosis International

, Volume 23, Issue 7, pp 1957–1965 | Cite as

Vertebral body bone strength: the contribution of individual trabecular element morphology

  • I. H. ParkinsonEmail author
  • A. Badiei
  • M. Stauber
  • J. Codrington
  • R. Müller
  • N. L. Fazzalari
Original Article

Abstract

Summary

Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading.

Introduction

Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength.

Methods

Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP).

Results

Bone volume fraction was the strongest individual determinant of SI strength (r 2 = 0.77, p < 0.0001) and AP (r 2 = 0.54, p < 0.0001). The determination of SI strength was improved to r 2 = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r 2 = 0.85 with the addition of mean rod volume and relative rod bone volume fraction.

Conclusions

Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

Keywords

Anisotropy Bone strength Spatial decomposition Trabecular bone plates Trabecular bone rods 

Notes

Acknowledgements

The authors are grateful to the staff at the Royal Adelaide Hospital Mortuary for their assistance with the collection of spines at autopsy. This work was supported by funding from the National Health and Medical Research Council, Australia. Dr. Badiei was supported by an Australian Postgraduate Award and the Discipline of Anatomy and Pathology, University of Adelaide.

Conflicts of interest

None

References

  1. 1.
    Kanis JA, McCloskey E, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475PubMedCrossRefGoogle Scholar
  2. 2.
    Anonymous (2001) The burden of brittle bones. In: Access economics, Canberra, ACTGoogle Scholar
  3. 3.
    Schuit SCE, van der Klift M, Weel AEAM, de Laet C, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  4. 4.
    Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, Seeman E (2006) Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone 38:694–700PubMedCrossRefGoogle Scholar
  5. 5.
    Compston JE (2010) Osteoporosis: social and economic impact. Radiol Clin N Am 48:477–482PubMedCrossRefGoogle Scholar
  6. 6.
    Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences. Bone 10:425–432PubMedCrossRefGoogle Scholar
  7. 7.
    Simpson EK, Parkinson IH, Manthey B, Fazzalari NL (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687PubMedCrossRefGoogle Scholar
  8. 8.
    Amling M, Herden S, Posl M, Hahn M, Delling G (1994) Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology. Bone Miner 27:193–208PubMedCrossRefGoogle Scholar
  9. 9.
    Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Micros 185:67–75CrossRefGoogle Scholar
  10. 10.
    Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. CMBBE 1:15–23PubMedGoogle Scholar
  11. 11.
    Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530PubMedCrossRefGoogle Scholar
  12. 12.
    Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Micros 101:153–168CrossRefGoogle Scholar
  13. 13.
    Stauber M, Muller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone 38:475–484PubMedCrossRefGoogle Scholar
  14. 14.
    Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, Guo XE (2008) Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res 23:223–235PubMedCrossRefGoogle Scholar
  15. 15.
    Stauber M, Muller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17:616–626PubMedCrossRefGoogle Scholar
  16. 16.
    Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffman PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892PubMedCrossRefGoogle Scholar
  17. 17.
    Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral morphology and its contribution to vertebral fracture strength. Bone 41:946–957PubMedCrossRefGoogle Scholar
  18. 18.
    Renders GAP, Mulder L, Langenbach GEJ, van Ruijven LJ, van Eijden TMGJ (2008) Biomechanical effect of mineral heterogeneity in trabecular bone. J Biomech 41:2793–2798PubMedCrossRefGoogle Scholar
  19. 19.
    Wang X, Niebur GL (2006) Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39:781–790PubMedCrossRefGoogle Scholar
  20. 20.
    Baum T, Carballido-Gamio J, Huber MB, Muller D, Monetti R, Rath C, Eckstein F, Lochmuller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS (2010) Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA. Osteoporos Int 21:1553–1564PubMedCrossRefGoogle Scholar
  21. 21.
    Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516PubMedCrossRefGoogle Scholar
  22. 22.
    Badiei A, Bottema MJ, Fazzalari NL (2007) Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res 22:1690–1699PubMedCrossRefGoogle Scholar
  23. 23.
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedCrossRefGoogle Scholar
  24. 24.
    Otsu N (1978) A threshold selection method from gray-scale histogram. IEEE Trans Syst Man Cybern 8:62–66CrossRefGoogle Scholar
  25. 25.
    Saha P, Chaudhuri BB (1996) 3D digital topography under binary transformation with applications. Comput Vision Image Underst 63:418–429CrossRefGoogle Scholar
  26. 26.
    Currey JD (2002) Euler buckling. In: Currey JD (ed) Bone: structure and mechanics. Princeton University Press, Princeton, pp 231–236Google Scholar
  27. 27.
    Hahn M, Vogel M, Popesius-Kempa M, Delling G (1992) Trabecular bone pattern factor: a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRefGoogle Scholar
  28. 28.
    Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRefGoogle Scholar
  29. 29.
    Fazzalari NL, Forwood MR, Smith K, Manthey B, Herreen P (1998) Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics and microdamage. Bone 22:381–388PubMedCrossRefGoogle Scholar
  30. 30.
    Shi X, Liu XS, Wang X, Guo XE, Niebur GL (2010) Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. J Biomech 43:2460–2466PubMedCrossRefGoogle Scholar
  31. 31.
    Liu XS, Zhang XH, Sajda P, Saha PK, Wehrli FW, Guo XE (2007) Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. In: ASME Summer bioengineering conference. Keystone, Colorado, pp SBC2007-176408Google Scholar
  32. 32.
    Liu XS, Sajda P, Saha PK, Wehrli FW, Guo XE (2006) Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 21:1608–1617PubMedCrossRefGoogle Scholar
  33. 33.
    Stauber M, Rapillard L, van Lenthe GH, Zysset PK, Muller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to the bone stiffness. J Bone Miner Res 21:586–595PubMedCrossRefGoogle Scholar
  34. 34.
    Cox LGE, Van Rietbergen B, van Donkelaar CC, Ito K (2010) Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0267-x

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  • I. H. Parkinson
    • 1
    • 2
    Email author
  • A. Badiei
    • 1
    • 2
  • M. Stauber
    • 3
    • 5
  • J. Codrington
    • 4
  • R. Müller
    • 3
  • N. L. Fazzalari
    • 1
    • 2
  1. 1.Bone and Joint Research LaboratorySA Pathology and Hanson InstituteAdelaideAustralia
  2. 2.Discipline of Anatomy and PathologyUniversity of AdelaideAdelaideAustralia
  3. 3.Institute for BiomechanicsETH ZurichZurichSwitzerland
  4. 4.School of Mechanical EngineeringUniversity of AdelaideAdelaideAustralia
  5. 5.b-cube AGSchlieren-ZurichSwitzerland

Personalised recommendations