Advertisement

Osteoporosis International

, Volume 23, Issue 5, pp 1489–1501 | Cite as

Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects

  • V. Bousson
  • C. Bergot
  • B. Sutter
  • P. Levitz
  • B. Cortet
  • the Scientific Committee of the GRIO (Groupe de Recherche et d’Information sur les Ostéoporoses)
Review

Abstract

The diagnosis of osteoporosis rests on areal bone mineral density (BMD) measurement using DXA. Cancellous bone microarchitecture is a key determinant of bone strength but cannot be measured using DXA. To meet the need for a clinical tool capable of assessing bone microarchitecture, the TBS was developed. The TBS is a texture parameter that evaluates pixel gray-level variations in DXA images of the lumbar spine. The TBS variations may reflect bone microarchitecture. We explain the general principles used to compute the TBS, and we report the correlations between TBS and microarchitectural parameters. Several limitations of the TBS as it is used now are pointed out. We discuss data from currently available clinical studies on the ability of the TBS to identify patients with fractures and to evaluate the fracture risk. We conclude that this new index emphasizes the failure of the BMD T-score to fully capture the fragility fracture risk. However, although microarchitecture may influence the TBS, today, to the best of our understanding, there is no sufficient evidence that a TBS measurement provides reliable information on the status of the bone microarchitecture for a given patient. The TBS depends on gray-level variations and in a projectional image obtained in vivo, these variations can have many causes. Nevertheless, as clinical studies suggest that the TBS predicts the risk of fracture even after adjustment for BMD, we are encouraged to learn more about this score. Additional studies will have to be performed to assess the advantages and limitations of the TBS, in order to ensure that it is used appropriately in clinical practice.

Keywords

Bone microarchitecture Bone quality DXA Osteoporosis Trabecular bone 

Notes

Conflict of interest

None.

References

  1. 1.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy (2001) Osteoporosis prevention, diagnosis and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  2. 2.
    Anonymous (1993) Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650CrossRefGoogle Scholar
  3. 3.
    Cummings SR (1985) Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med 78:487–494PubMedCrossRefGoogle Scholar
  4. 4.
    Kanis J, Oden A, Johansson H, Borgström F, Ström O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44:734–743PubMedCrossRefGoogle Scholar
  5. 5.
    Johansson H, Kanis J, Oden A, Johnell O, McCloskey E (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteop Int 20:1675–1682CrossRefGoogle Scholar
  6. 6.
    Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787PubMedCrossRefGoogle Scholar
  7. 7.
    Pothuaud L, Héraud A, Barthe N, Isidore MP, Carceller P, Hans D (2008) Validation of 2D/3D generic mathematical relationship between TBS as assessed by DXA, and BV/TV and TbTh as assessed by microcomputed tomography: an experimental study based on human cadaver vertebrae. ASBMR, MontrealGoogle Scholar
  8. 8.
    Pothuaud L, Héraud A, Carceller P, Hans D (2008) TBS of the AP spine as assessed by DXA is correlated with 3D bone microarchitecture parameters: an experimental study based on human cadaver vertebrae. ECTS, BarcelonaGoogle Scholar
  9. 9.
    Winzenrieth R, Piveteau T, Hans DB (2010) Evaluation des corrélations entre les paramètres de microarchitecture 3DμCT et TBS: effet de la résolution et corrélation avec les mesures TBS DXA. SFR, ParisGoogle Scholar
  10. 10.
    Serra J (1982) Ch 9. In image analysis and mathematical morphology. Academic Press, London, p 610Google Scholar
  11. 11.
    Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437CrossRefGoogle Scholar
  12. 12.
    Gouyet JF (1992) Physique et structures fractales. Masson, ParisGoogle Scholar
  13. 13.
    Harba R, Jacquet G, Jenname R, Loussot T, Benhamou CL, Lespesailles E, Tourlier D (1994) Determination of fractal scales on trabecular bone X-ray images. Fractals 2:422–438CrossRefGoogle Scholar
  14. 14.
    Pothuaud L (2000) Thesis: Corrélation entre la microarchitecture 3D et la projection radiographique de l'os trabéculaire: Relation à l'ostéoporose. (Relationship between 3D microarchitecture and 2D X-rays projection of the trabecular bone: application to osteoporosis). Chapter 5 et annexe 1.1. In Cote INIST-CNRS: T 134480. Orléans, France, No. 00 ORLE 2019, pp 140Google Scholar
  15. 15.
    Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, Benhamou CL (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 8:618–625PubMedCrossRefGoogle Scholar
  16. 16.
    Pothuaud L, Benhamou CL, Porion P, Lespessailles E, Harba R, Levitz P (2000) Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J Bone Miner Res 15:691–699PubMedCrossRefGoogle Scholar
  17. 17.
    Pothuaud L, Carceller P (2009) US Patent 7,609,867 B2Google Scholar
  18. 18.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg M-A (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312PubMedCrossRefGoogle Scholar
  19. 19.
    Hans DB, Cormier C, Bloch JG, Dufour R, Héraud A, Barthe N, Colson F, Giraldi JM, Lamy O, Krieg MA (2009) Indice TBS: la microarchitecture par DXA. Impact Santé, Abstract Rhumatologie 302:4–8Google Scholar
  20. 20.
    Dufour R, Héraud A (2009) Lumbar spine micro-architecture in french women derived from DXA: TBS normative data. International Society for Clinical Densitometry, OrlandoGoogle Scholar
  21. 21.
    Bloch JG, Hans DB, Diebolt V, Kieffer D, Krieg MA (2008) Evaluation du risque fracturaire dans la zone d'ostéopénie: utilisation clinique d'un indice de la microarchitecture osseuse (TBS: trabéculométrie et trabéculographie). SFR, ParisGoogle Scholar
  22. 22.
    Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176PubMedCrossRefGoogle Scholar
  23. 23.
    Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181PubMedCrossRefGoogle Scholar
  24. 24.
    Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109PubMedCrossRefGoogle Scholar
  25. 25.
    Maury E, Guignat L, Winzenrieth R, Cormier C (2009) BMD and TBS microarchitecture parameter assessment at spine in patients with anorexia nervosa. ASBMR, DenverGoogle Scholar
  26. 26.
    Bréban S, Kolta S, Briot K, Paternotte S, Ghazi M, Fechtenbaum J, Dougados M, Roux C (2010) Combination of bone mineral density and trabecular bone score for vertebral fracture prediction in secondary osteoporosis. ASBMR, TorontoGoogle Scholar
  27. 27.
    Colson F, Picard A, Rabier B, Piperno M, Vignon E (2009) Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine? ASBMR, DenverGoogle Scholar
  28. 28.
    Krieg MA, Goertzen AL, Leslie WD, Hans DB (2010) Effects of antiresorptive agents on bone micro-architecture assessed by trabecular bone score in women aged 50 and older: the Manitoba prospective study. ASBMR, TorontoGoogle Scholar
  29. 29.
    Hans DB, Goertzen AL, Krieg MA, Leslie WD (2009) Bone micro-architecture assessed by TBS predicts clinical spine fractures independently of BMD in 29407 women aged 50 and older: the Manitoba Prospective Study. ASBMR, DenverGoogle Scholar
  30. 30.
    Hans DB, Goertzen AL, Krieg MA, Leslie WD (2009) Bone micro-architecture assessed by TBS predicts clinical spine fractures independently of BMD in 22234 women aged 50 and older: the Manitoba Prospective Study. ASBMR, DenverGoogle Scholar
  31. 31.
    Boutroy S, Hans DB, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Munoz F, Chapurlat R (2010) Trabecular bone score helps classifying women at risk of fracture: a retrospective analysis of the OFELY study. ASBMR, TorontoGoogle Scholar
  32. 32.
    Winzenrieth R, Dufour R, Popova Y, Hans D (2010) Spine osteoarthrosis has no effect on TBS assessment: a site matched study with BMD. International Society for Clinical Densitometry, BucharestGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  • V. Bousson
    • 1
    • 2
  • C. Bergot
    • 1
    • 3
  • B. Sutter
    • 4
  • P. Levitz
    • 5
  • B. Cortet
    • 6
  • the Scientific Committee of the GRIO (Groupe de Recherche et d’Information sur les Ostéoporoses)
  1. 1.Faculté de Médecine Lariboisière-Saint Louis, Laboratoire de Radiologie Expérimentale, CNRS UMR 7052Université Paris VIIParisFrance
  2. 2.Service de Radiologie OstéoArticulaireAssistance Publique-Hôpitaux de Paris, Hôpital LariboisièreParisFrance
  3. 3.Service de Radiologie, Assistance Publique-Hôpitaux de ParisHôpital Saint-LouisParisFrance
  4. 4.Unité de Médecine Nucléaire, Institut Calot, Groupe HOPALEBerck/Mer CedexFrance
  5. 5.PMC-CNRSEcole PolytechniquePalaiseauFrance
  6. 6.Service de RhumatologieHôpital Roger SalengroLille CedexFrance

Personalised recommendations