Osteoporosis International

, Volume 23, Issue 5, pp 1541–1552 | Cite as

Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial

  • C.-L. ShenEmail author
  • M.-C. Chyu
  • J. K. Yeh
  • Y. Zhang
  • B. C. Pence
  • C. K. Felton
  • J.-M. Brismée
  • B. H. Arjmandi
  • S. Doctolero
  • J.-S. Wang
Original Article



Postmenopausal women with osteopenia received green tea polyphenols (GTP) supplement and/or Tai Chi exercise for 6 months. Bone turnover biomarkers, calcium metabolism, and muscle strength were measured. This study showed that GTP supplementation and Tai Chi exercise increased bone formation biomarkers and improved bone turnover rate. Tai Chi exercise increased serum parathyroid hormone. GTP supplementation, Tai Chi exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia.


This study evaluated the effect of GTP supplementation and Tai Chi (TC) exercise on serum markers of bone turnover (bone-specific alkaline phosphatase, BAP, and tartrate-resistant acid phosphatase, TRAP), calcium metabolism, and muscle strength in postmenopausal osteopenic women.


One hundred and seventy-one postmenopausal osteopenic women were randomly assigned to four groups: (1) placebo (500 mg starch/day), (2) GTP (500 mg GTP/day), (3) placebo + TC (placebo plus TC training at 60 min/session, three sessions/week), and (4) GTP + TC (GTP plus TC training). Overnight fasting blood and urine samples were collected at baseline, 1, 3, and 6 months for biomarker analyses. Muscle strength was evaluated at baseline, 3, and 6 months. One hundred and fifty subjects completed the 6-month study.


Significant increases in BAP level due to GTP intake (at 1 month) and TC (at 3 months) were observed. Significant increases in the change of BAP/TRAP ratio due to GTP (at 3 months) and TC (at 6 months) were also observed. Significant main effect of TC on the elevation in serum parathyroid hormone level was observed at 1 and 3 months. At 6 months, muscle strength significantly improved due to GTP, TC, and GTP + TC interventions. Neither GTP nor TC affected serum TRAP, serum and urinary calcium, and inorganic phosphate.


In summary, GTP supplementation and TC exercise increased BAP and improved BAP/TRAP ratio. TC exercise increased serum parathyroid hormone. GTP supplementation, TC exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia.


Bone turnover biomarker Calcium metabolism Green tea Mind–body exercise Muscle strength Osteoporosis Tai Chi 



This study was supported by the National Center for Complementary and Alternative Medicine (NCCAM) of the National Institutes of Health under grant 1R21AT003735-01A1. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the NCCAM or the National Institutes of Health. We gratefully acknowledge the study participants; without them, this study would not have been possible. We would like to thank Dr. Jay Magaziner (University of Maryland, MD) for their advice. We also thank Mary J. Flores, Raul Y. Dagda, and Marisela Dagda for their assistance in data collection. Clinical trial number: NCT00625391.

Conflicts of interest



  1. 1.
    NIH (2001) Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795CrossRefGoogle Scholar
  2. 2.
    Looker AC, Melton LJ 3rd, Harris TB, Borrud LG, Shepherd JA (2010) Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res 25(1):64–71PubMedCrossRefGoogle Scholar
  3. 3.
    Hamdi Kara I, Aydin S, Gemalmaz A, Aktürk Z, Yaman H, Bozdemir N, Kurdak H, Sitmapinar K, Devran Sencar I, Basak O, Akdeniz M, Isildar H, Burgut E, Ozcan S, Akca U, Dağdeviren N, Ungagn M (2007) Habitual tea drinking and bone mineral density in postmenopausal Turkish women: investigation of prevalence of postmenopausal osteoporosis in Turkey (IPPOT Study). Int J Vitam Nutr Res 77(6):389–397, Erratum in: Int J Vitam Nutr Res 2008;78(3):following 166PubMedCrossRefGoogle Scholar
  4. 4.
    Muraki S, Yamamoto S, Ishibashi H, Oka H, Yoshimura N, Kawaguchi H, Nakamura K (2007) Diet and lifestyle associated with increased bone mineral density: cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J Orthop Sci 12(4):317–320PubMedCrossRefGoogle Scholar
  5. 5.
    Hegarty VM, May HM, Khaw KT (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71(4):1003–1007PubMedGoogle Scholar
  6. 6.
    Hoover PA, Webber CE, Beaumont LF, Blake JM (1996) Postmenopausal bone mineral density: relationship to calcium intake, calcium absorption, residual estrogen, body composition, and physical activity. Can J Physiol Pharmacol 74(8):911–917PubMedCrossRefGoogle Scholar
  7. 7.
    Devine A, Hodgson JM, Dick IM, Prince RL (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86(4):1243–1247PubMedGoogle Scholar
  8. 8.
    Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006PubMedCrossRefGoogle Scholar
  9. 9.
    Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, Dilsen G, Gennari C, Lopes Vaz A, Lyritis G et al (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis J, Johnell O, Gullberg B, Allander E, Elffors L, Ranstam J, Dequeker J, Dilsen G, Gennari C, Vaz AL, Lyritis G, Mazzuoli G, Miravet L, Passeri M, Perez Cano R, Rapado A, Ribot C (1999) Risk factors for hip fracture in men from southern Europe: the MEDOS Study. Mediterranean Osteoporosis Study. Osteoporos Int 9:45–54PubMedCrossRefGoogle Scholar
  11. 11.
    Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44:684–690PubMedCrossRefGoogle Scholar
  12. 12.
    Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Dunn DM, Wang JS (2011) Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int 22:327–337PubMedCrossRefGoogle Scholar
  13. 13.
    Chen X, Pettinger MB, Ritenbaugh C, LaCroix AZ, Robbins J, Caan BJ, Barad DH, Hakim IA (2003) Habitual tea consumption and risk of osteoporosis: a Prospective Study in the Women’s Health Initiative Observational Cohort. Am J Epidemiol 158:772–781PubMedCrossRefGoogle Scholar
  14. 14.
    Vestergaard P, Hermann AP, Gram J, Jensen LB, Eiken P, Abrahamsen B, Brot C, Kolthoff N, Sørensen OH, Beck Nielsen H, Pors Nielsen S, Charles P, Mosekilde L (2001) Evaluation of methods for prediction of bone mineral density by clinical and biochemical variables in perimenopausal women. Maturitas 40(3):211–220PubMedCrossRefGoogle Scholar
  15. 15.
    Hong X, Lü H, Yang J, Li Z (2001) An analysis on the forearm bone mass density of rural female and the environmental risk factors. Wei Sheng Yan Jiu 30(4):227–230PubMedGoogle Scholar
  16. 16.
    Hernandez ER, Seco-Durban C, Revilla M, Gonzaloz-Riola J, Rico H (1995) Evaluation of bone density with peripheral quantitative computed tomography in health premenopausal, perimenopausal, and postmenopausal women. Age Ageing 24:447–450PubMedCrossRefGoogle Scholar
  17. 17.
    Kasamatsu T, Yoshimura N, Morioka S, Sugita K, Hashimoto T (1996) A population survey on bone mineral density in a fishing village in Wakayama prefecture. (Part 1) Distribution of bone mineral density by sex and age based on a representative sample of the community. Nippon Eiseigaku Zasshi 50(6):1084–1092 [Japanese]PubMedCrossRefGoogle Scholar
  18. 18.
    Hernández-Avila M, Stampfer MJ, Ravnikar VA, Willett WC, Schiff I, Francis M, Longcope C, McKinlay SM, Longcope C (1993) Caffeine and other predictors of bone density among pre- and perimenopausal women. Epidemiology 4(2):128–134PubMedCrossRefGoogle Scholar
  19. 19.
    Kyriazopoulos P, Trovas G, Charopoulos J, Antonogiannakis E, Galanos A, Lyritis G (2006) Lifestyle factors and forearm bone density in young Greek men. Clin Endocrinol (Oxf) 65(2):234–238CrossRefGoogle Scholar
  20. 20.
    Hamdi Kara I, Aydin S, Gemalmaz A, Aktürk Z, Yaman H, Bozdemir N, Kurdak H, Sitmapinar K, Devran Sencar I, Başak O, Akdeniz M, Işildar H, Burgut E, Ozcan S, Akça U, Dağdeviren N, Ungan M (2007) Habitual tea drinking and bone mineral density in postmenopausal Turkish women: investigation of prevalence of postmenopausal osteoporosis in Turkey (IPPOT Study). Int J Vitam Nutr Res 77(6):389–397PubMedCrossRefGoogle Scholar
  21. 21.
    Shen CL, Wang P, Guerrier J, Yeh JK, Wang JS (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19(7):979–990PubMedCrossRefGoogle Scholar
  22. 22.
    Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS (2010) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem 21(10):968–974PubMedCrossRefGoogle Scholar
  23. 23.
    Dorchies OM, Wagner S, Vuadens O, Waldhauser K, Buetler TM, Kucera P, Ruegg UT (2006) Green tea extract and its major polyphenol (−)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290(2):C616–C625PubMedCrossRefGoogle Scholar
  24. 24.
    Murase T, Haramizu S, Ota N, Hase T (2008) Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. Am J Physiol Regul Integr Comp Physiol 295:R281–R289PubMedCrossRefGoogle Scholar
  25. 25.
    Woo J, Hong A, Lau E, Lynn H (2007) A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 36(3):262–268PubMedCrossRefGoogle Scholar
  26. 26.
    Chen KM, Lin JN, Lin HS, Wu HC, Chen WT, Li CH, Kai Lo S (2008) The effects of a Simplified Tai-Chi Exercise Program (STEP) on the physical health of older adults living in long-term care facilities: a single group design with multiple time points. Int J Nurs Stud 45(4):501–507PubMedCrossRefGoogle Scholar
  27. 27.
    Shen CL, Williams JS, Chyu MC, Paige RL, Stephens AL, Chauncey KB, Prabhu FR, Ferris LT, Yeh JK (2007) Comparison of the effects of Tai Chi and resistance training on bone metabolism in the elderly: a feasibility study. Am J Chin Med 35(3):369–381PubMedCrossRefGoogle Scholar
  28. 28.
    Wolfson L, Whipple R, Derby C, Judge J, King M, Amerman P, Schmidt J, Smyers D (1996) Balance and strength training in older adults: intervention gains and Tai Chi maintenance. J Am Geriatr Soc 44(5):498–506PubMedGoogle Scholar
  29. 29.
    Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85(5):717–722PubMedCrossRefGoogle Scholar
  30. 30.
    Qin L, Au S, Choy W, Leung P, Neff M, Lee K, Lau M, Woo J, Chan K (2002) Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: a case–control study. Arch Phys Med Rehabil 83(10):1355–1359PubMedCrossRefGoogle Scholar
  31. 31.
    Qin L, Choy W, Leung K, Leung PC, Au S, Hung W, Dambacher M, Chan K (2005) Beneficial effects of regular Tai Chi exercise on musculoskeletal system. J Bone Miner Metab 23(2):186–193PubMedCrossRefGoogle Scholar
  32. 32.
    Kim CJ, Oh KW, Rhee EJ, Kim KH, Jo SK, Jung CH, Won JC, Park CY, Lee WY, Park SW, Kim SW (2009) Relationship between body composition and bone mineral density (BMD) in perimenopausal Korean women. Clin Endocrinol (Oxf) 71(1):18–26CrossRefGoogle Scholar
  33. 33.
    Iki M, Kajita E, Dohi Y, Nishino H, Kusaka Y, Tsuchida C, Yamamoto K, Ishii Y (1996) Age, menopause, bone turnover markers and lumbar bone loss in healthy Japanese women. Maturitas 25(1):59–67PubMedCrossRefGoogle Scholar
  34. 34.
    Sherk VD, Karabulut M, Bemben MG, Bemben DA (2009) Age comparisons of bone density and geometry in men. J Musculoskelet Neuronal Interact 9(4):256–262PubMedGoogle Scholar
  35. 35.
    Marin RV, Pedrosa MA, Moreira-Pfrimer LD, Matsudo SM, Lazaretti-Castro M (2010) Association between lean mass and handgrip strength with bone mineral density in physically active postmenopausal women. J Clin Densitom 13(1):96–101PubMedCrossRefGoogle Scholar
  36. 36.
    Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA (2010) Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch Gerontol Geriatr 51(3):295–298PubMedCrossRefGoogle Scholar
  37. 37.
    Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT (2002) Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 75(4):749–753PubMedGoogle Scholar
  38. 38.
    Dorchies OM, Wagner S, Buetler TM, Ruegg UT (2009) Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (−)-epigallocatechin gallate. Biofactors 35(3):279–294PubMedCrossRefGoogle Scholar
  39. 39.
    Evans NP, Call JA, Bassaganya-Riera J, Robertson JL, Grange RW (2010) Green tea extract decreases muscle pathology and NF-kappaB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 29(3):391–398PubMedCrossRefGoogle Scholar
  40. 40.
    Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, Talmadge RJ, Grange RW (2008) Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol 105(3):923–932PubMedCrossRefGoogle Scholar
  41. 41.
    Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I (2005) Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Inter Comp Physiol 288:R708–R715CrossRefGoogle Scholar
  42. 42.
    Xu DQ, Li JX, Hong Y (2006) Effects of long term Tai Chi practice and jogging exercise on muscle strength and endurance in older people. Br J Sports Med 40(1):50–54, discussion 50–54PubMedCrossRefGoogle Scholar
  43. 43.
    Xu DQ, Li JX, Hong Y (2005) Effect of regular Tai Chi and jogging exercise on neuromuscular reaction in older people. Age Ageing 34(5):439–444PubMedCrossRefGoogle Scholar
  44. 44.
    Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15(7):1337–1345PubMedCrossRefGoogle Scholar
  45. 45.
    Shen CL, Chyu MC, Yeh JK, Felton CK, Xu KT, Pence BC, Wang JS (2009) Green tea polyphenols and Tai Chi for bone health: designing a placebo-controlled randomized trial. BMC Musculoskelet Disord 10:110PubMedCrossRefGoogle Scholar
  46. 46.
    Liang SY, Wu WC (1996) Tai Chi Chuan: 24 and 48 postures with martial applications. YMAA Publication Center, RoslindaleGoogle Scholar
  47. 47.
    Godin G, Shephard RJ (1997) Godin leisure time exercise questionnaire. Med Sci Sports Exerc 29:36–38Google Scholar
  48. 48.
    Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49PubMedCrossRefGoogle Scholar
  49. 49.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  50. 50.
    Ayotte NW, Stetts DM, Keenan G, Greenway EH (2007) Electromyographical analysis of selected lower extremity muscles during 5 unilateral weight-bearing exercises. J Orthop Sports Phys Ther 37(2):48–55PubMedCrossRefGoogle Scholar
  51. 51.
    Ekstrom RA, Donatelli RA, Carp KC (2007) Electromygraphic analysis of core trunk, hip, and thigh muscle during 9 rehabilitation exercises. J Orthop Sports Phys Ther 37(12):754–762PubMedGoogle Scholar
  52. 52.
    Ballard JE, McFarland C, Wallace LS, Holiday DB, Roberson G (2004) The effect of 15 weeks of exercise on balance, leg strength, and reduction in falls in 40 women aged 65 to 89 years. J Am Med Womens Assoc 59(4):255–261PubMedGoogle Scholar
  53. 53.
    Vali B, Rao LG, El-Sohemy A (2007) Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem 18(5):341–347PubMedCrossRefGoogle Scholar
  54. 54.
    Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16(12):2039–2045PubMedCrossRefGoogle Scholar
  55. 55.
    Tokuda H, Takai S, Matsushima-Nishiwaki R, Akamatsu S, Hanai Y, Hosoi T, Harada A, Ohta T, Kozawa O (2007) (−)-Epigallocatechin gallate enhances prostaglandin F2alpha-induced VEGF synthesis via upregulating SAPK/JNK activation in osteoblasts. J Cell Biochem 100(5):1146–1153PubMedCrossRefGoogle Scholar
  56. 56.
    Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O (2007) (−)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: inhibition of p44/p42 MAP kinase activation. FEBS Lett 581(7):1311–1316PubMedCrossRefGoogle Scholar
  57. 57.
    Kirsteins AE, Diettz F, Hwang SM (1992) Evaluating the safety and potential use of a weight-bearing exercise, Tai-Chi Chuan, for rheumatoid arthritis patients. Am J Phys Med Rehabil 70(3):136–141CrossRefGoogle Scholar
  58. 58.
    Karabulut M, Bemben DA, Sherk VD, Anderson MA, Abe T, Bemben MG (2011) Effects of high intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men. Eur J Appl Physiol [Epub ahead of print]Google Scholar
  59. 59.
    Whipple TJ, Le BH, Demers LM, Chinchilli VM, Petit MA, Sharkey N, Williams NI (2004) Acute effects of moderate intensity resistance exercise on bone cell activity. Int J Sports Med 25(7):496–501PubMedCrossRefGoogle Scholar
  60. 60.
    Sartorio A, Lafortuna C, Capodaglio P, Vangeli V, Narici MV, Faglia G (2001) Effects of a 16-week progressive high-intensity strength training (HIST) on indexes of bone turnover in men over 65 years: a randomized controlled study. J Endocrinol Invest 24(11):882–886PubMedGoogle Scholar
  61. 61.
    Zittermann A, Geppert J, Baier S, Zehn N, Gouni-Berthold I, Berthold HK, Reinsberg J, Stehle P (2004) Short-term effects of high soy supplementation on sex hormones, bone markers, and lipid parameters in young female adults. Eur J Nutr 43(2):100–108PubMedCrossRefGoogle Scholar
  62. 62.
    Viljakainen HT, Väisänen M, Kemi V, Rikkonen T, Kröger H, Laitinen EK, Rita H, Lamberg-Allardt C (2009) Wintertime vitamin D supplementation inhibits seasonal variation of calcitropic hormones and maintains bone turnover in healthy men. J Bone Miner Res 24(2):346–352PubMedCrossRefGoogle Scholar
  63. 63.
    Miller LJ 3rd, Crowson CS, O’Fallon WM, Wahner HW, Riggis BL (2003) Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res 18(2):312–318CrossRefGoogle Scholar
  64. 64.
    Flemiing KH, Heimbach JT (1994) Consumption of calcium in the U.S.: food sources and intake levels. J Nutr 124(8 Suppl):1426S–1430SGoogle Scholar
  65. 65.
    Fulgoni V 3rd, Nicholls J, Reed A, Buckley R, Kafer K, Huth P, DiRienzo D, Miller GD (2007) Dairy consumption and related nutrient intake in African-American adults and children in the United States: continuing survey of food intakes by individuals 1994–1996, 1998, and the National Health And Nutrition Examination Survey 1999–2000. J Am Diet Assoc 107(2):256–264PubMedCrossRefGoogle Scholar
  66. 66.
    Kanders B, Dempster DW, Lindsay R (1988) Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 3(2):145–149PubMedCrossRefGoogle Scholar
  67. 67.
    Kemmler W, Lauber D, Weineck J, Hensen J, Kalender W, Engelke K (2004) Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med 164(10):1084–1091PubMedCrossRefGoogle Scholar
  68. 68.
    Jilka RL, O’Brien CA, Bartell SM, Weinstein RS, Manolagas SC (2010) Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res 25(11):2427–2437PubMedCrossRefGoogle Scholar
  69. 69.
    Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R (1993) Anabolic actions of parathyroid hormone on bone. Endocr Rev 14:690–709PubMedGoogle Scholar
  70. 70.
    Canalis E, Hock JM, Raisz LG (1994) Anabolic and catabolic effects of parathyroid hormone on bone and interactions with growth factors. In: Bilezikian JP, Marcus R, Levine MA (eds) The parathyroids: basic and clinical concepts. Raven, New York, pp 65–82Google Scholar
  71. 71.
    Thorsen K, Kristoffersson A, Hultdin J, Lorentzon R (1997) Effect of moderate endurance exercise on calcium, parathyroid hormone, and markers of bone metabolism in young women. Calcif Tissue Int 60:16–20PubMedCrossRefGoogle Scholar
  72. 72.
    Brahm H, Piehl-Aulin K, Saltin B, Ljunghall S (1997) Net fluxes over working thigh of hormones, growth factors and biomarkers of bone metabolism during short lasting dynamic exercise. Calcif Tissue Int 60(2):175–180PubMedCrossRefGoogle Scholar
  73. 73.
    Maltais ML, Desroches J, Dionne IJ (2009) Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact 9(4):186–197PubMedGoogle Scholar
  74. 74.
    Wu G, Liu W, Hitt J, Millon D (2004) Spatial, temporal and muscle action patterns of Tai Chi gait. J Electromyogr Kinesiol 14(3):343–354PubMedCrossRefGoogle Scholar
  75. 75.
    Wu G (2008) Muscle action pattern and knee extensor strength of older Tai Chi exercisers. Med Sport Sci 52:30–39PubMedCrossRefGoogle Scholar
  76. 76.
    Tseng SC, Liu W, Finley M, McQuade K (2007) Muscle activation profiles about the knee during Tai-Chi stepping movement compared to the normal gait step. J Electromyogr Kinesiol 17(3):372–380PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  • C.-L. Shen
    • 1
    • 2
    • 3
    Email author
  • M.-C. Chyu
    • 1
    • 4
    • 5
    • 6
  • J. K. Yeh
    • 7
  • Y. Zhang
    • 3
    • 8
  • B. C. Pence
    • 1
  • C. K. Felton
    • 9
  • J.-M. Brismée
    • 10
  • B. H. Arjmandi
    • 11
  • S. Doctolero
    • 12
  • J.-S. Wang
    • 13
  1. 1.Department of PathologyTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Department of Laboratory Science and Primary CareTexas Tech University Health Sciences CenterLubbockUSA
  3. 3.Laura W. Bush Institute for Women’s HealthTexas Tech University Health Sciences CenterLubbockUSA
  4. 4.Healthcare EngineeringTexas Tech UniversityLubbockUSA
  5. 5.Department of Health, Exercise, and Sport SciencesTexas Tech UniversityLubbockUSA
  6. 6.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA
  7. 7.Applied Bench Core LaboratoryWinthrop-University HospitalMineolaUSA
  8. 8.Department of Community and Family MedicineTexas Tech UniversityLubbockUSA
  9. 9.Department of Obstetrics and GynecologyTexas Tech UniversityLubbockUSA
  10. 10.Rehabilitation SciencesTexas Tech UniversityLubbockUSA
  11. 11.Department of Nutrition, Food & Exercise SciencesFlorida State UniversityTallahasseeUSA
  12. 12.Clinical Research CenterTexas Tech University Health Sciences CenterLubbockUSA
  13. 13.Department of Environmental Health ScienceUniversity of GeorgiaAthensUSA

Personalised recommendations