Osteoporosis International

, Volume 22, Issue 6, pp 2023–2026 | Cite as

Cell and gene therapy for bone repair

Bone Quality Seminars: Bone Fracture Healing and Strengthening

Abstract

Improving bone repair remains an important and challenging issue. Therapeutic approaches to amplify osteogenic cell pool or function include cell and gene therapies. We identified genes that promote human mesenchymal cell differentiation and bone formation. Targeting these or other genes may improve the efficacy of cell therapy for bone repair.

Keywords

Bone repair Cell therapy Gene therapy Mesenchymal stromal cells Osteoblast 

Notes

Acknowledgements

The publication of the proceedings of the fifth Bone Quality Seminar 2010 has been made possible through an educational grant from Servier.

Conflicts of interest

None.

References

  1. 1.
    Marie PJ, Fromigue O (2006) Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med 1:539–548PubMedCrossRefGoogle Scholar
  2. 2.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902PubMedCrossRefGoogle Scholar
  3. 3.
    Matsumoto T, Kuroda R, Mifune Y, Kawamoto A, Shoji T, Miwa M, Asahara T, Kurosaka M (2008) Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 43:434–439PubMedCrossRefGoogle Scholar
  4. 4.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471PubMedCrossRefGoogle Scholar
  5. 5.
    Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109–116PubMedCrossRefGoogle Scholar
  6. 6.
    Vilquin JT, Rosset P (2006) Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med 1:589–604PubMedCrossRefGoogle Scholar
  7. 7.
    Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23PubMedCrossRefGoogle Scholar
  8. 8.
    Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337PubMedCrossRefGoogle Scholar
  9. 9.
    Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRefGoogle Scholar
  10. 10.
    Fromigue O, Modrowski D, Marie PJ (2004) Growth factors and bone formation in osteoporosis: roles for fibroblast growth factor and transforming growth factor beta. Curr Pharm Des 10:2593–2603PubMedCrossRefGoogle Scholar
  11. 11.
    Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P, Bianco P, Jorgensen C (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7:32–42PubMedCrossRefGoogle Scholar
  12. 12.
    Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150PubMedCrossRefGoogle Scholar
  13. 13.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386PubMedCrossRefGoogle Scholar
  14. 14.
    Wozney JM, Seeherman HJ (2004) Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol 15:392–398PubMedCrossRefGoogle Scholar
  15. 15.
    Hsu WK, Sugiyama O, Park SH, Conduah A, Feeley BT, Liu NQ, Krenek L, Virk MS, An DS, Chen IS, Lieberman JR (2007) Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone 40:931–938PubMedCrossRefGoogle Scholar
  16. 16.
    Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT (2008) Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA 105:11099–11104PubMedCrossRefGoogle Scholar
  17. 17.
    Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, Zhang X, Rubery PT, Rabinowitz J, Samulski RJ, Nakamura T, Soballe K, O'Keefe RJ, Boyce BF, Schwarz EM (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 11:291–297PubMedCrossRefGoogle Scholar
  18. 18.
    Kofron MD, Li X, Laurencin CT (2004) Protein- and gene-based tissue engineering in bone repair. Curr Opin Biotechnol 15:399–405PubMedCrossRefGoogle Scholar
  19. 19.
    Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, Srouji S, Livne E, Marie PJ (2009) Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106:18587–18591PubMedCrossRefGoogle Scholar
  20. 20.
    Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O (2008) FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J 22:3813–3822PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  1. 1.Laboratory of Osteoblast Biology and PathologyInserm UMR606 and University Paris Diderot, Hopital LariboisiereParis cedex 10France

Personalised recommendations