Osteoporosis International

, Volume 23, Issue 1, pp 339–349 | Cite as

Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys

Original Article



Balicatib, an inhibitor of the osteoclastic enzyme cathepsin K, was tested in ovariectomized monkeys, a model for osteoporosis. As expected, ovariectomy-induced bone mass changes were partially prevented by balicatib treatment. Bone turnover was significantly decreased at most sites, but unlike most bone resorption inhibitors, periosteal bone formation rates were increased.


Selective inhibitors of the osteoclastic enzyme cathepsin K have potential in osteoporosis treatment. This study evaluated the efficacy of balicatib (AAE581), a novel inhibitor of human cathepsin K, on bone mass and dynamic histomorphometric endpoints in ovariectomized monkeys.


Eighty adult female Macaca fascicularis underwent bilateral ovariectomies and were dosed twice daily by oral gavage with balicatib at 0, 3, 10, and 50 mg/kg for 18 months (groups O, L, M, H, respectively). Approximately 1 month after treatment initiation, the 50 mg/kg dose was decreased to 30 mg/kg. Twenty animals underwent sham-ovariectomies (group S). Bone mass was measured at 3–6 month intervals. At 18 months, vertebra and femur were collected for histomorphometry.


In both spine and femur, group O animals lost BMD and all other groups gained BMD between 0 and 18 months. In balicatib-treated animals, BMD change in the spine was intermediate between group S and O, with groups L and M significantly different from group O. In femur, all three doses of balicatib significantly increased BMD gain relative to group O and group mean values were also higher than group S. Most histomorphometric indices of bone turnover in vertebra and femoral neck were significantly lower than group O with balicatib treatment, except that periosteal bone formation rates (Ps.BFR) were significantly higher. Ps.BFR in mid-femur was also significantly increased by treatment.


Balicatib partially prevented ovariectomy-induced changes in bone mass, inhibited bone turnover at most sites, and had an unexpected stimulatory effect on periosteal bone formation.


Anti-resorptive Cathepsin K Macaca fascicularis Osteoporosis Primate 


  1. 1.
    Borges JL, Bilezikian JP (2006) Update on osteoporosis therapy. Arq Bras Endocrinol Metabol 50:755–763PubMedCrossRefGoogle Scholar
  2. 2.
    Girotra M, Rubin MR, Bilezikian JP (2006) Anabolic agents for osteoporosis: what is their likely place in therapy? Treat Endocrinol 5:347–358PubMedCrossRefGoogle Scholar
  3. 3.
    McClung M (2006) Bisphosphonates. Arq Bras Endocrinol Metabol 50:735–744PubMedCrossRefGoogle Scholar
  4. 4.
    Epstein S (2006) Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Ther 28:151–173PubMedCrossRefGoogle Scholar
  5. 5.
    Marshall JK (2002) The gastrointestinal tolerability and safety of oral bisphosphonates. Exp Opin Drug Safety 1:71–78CrossRefGoogle Scholar
  6. 6.
    Reginster JY, Felsenberg D, Cooper C, Stakkestad JA, Miller PD, Kendler DL, Adami S, McClung MR, Bolognese MA, Civitelli R, Dumont E, Bonvoisin B, Recker RR, Delmas PD (2006) A new concept for bisphosphonate therapy: a rationale for the development of monthly oral dosing of ibandronate. Osteoporos Int 17:159–166PubMedCrossRefGoogle Scholar
  7. 7.
    Reginster JY (2006) Adherence and persistence: impact on outcomes and health care resources. Bone 38:18–21CrossRefGoogle Scholar
  8. 8.
    Shane E, Goldring S, Christakos S, Drezner M, Eisman J, Silverman S, Pendrys D (2006) Osteonecrosis of the jaw: more research needed. J Bone Miner Res 21:1503–1505PubMedCrossRefGoogle Scholar
  9. 9.
    Boyce BF, Xing L, Yao Z, Shakespeare WC, Wang Y, Metcalf CA 3rd, Sundaramoorthi R, Dalgarno DC, Iuliucci JD, Sawyer TK (2006) Future anti-catabolic therapeutic targets in bone disease. Ann NY Acad Sci 1068:447–457PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi N, Udagawa M, Takami M, Suda T (2002) Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic, San Diego, pp 109–126CrossRefGoogle Scholar
  11. 11.
    Väänänen K, Zhao H (2002) Osteoclast function: biology and mechanism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic, San Diego, pp 127–139CrossRefGoogle Scholar
  12. 12.
    Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:973–993PubMedCrossRefGoogle Scholar
  13. 13.
    Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516PubMedCrossRefGoogle Scholar
  14. 14.
    Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663PubMedCrossRefGoogle Scholar
  15. 15.
    Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458PubMedCrossRefGoogle Scholar
  16. 16.
    Marquis RW, Ru Y, Yamashita DS, Oh HJ, Yen J, Thompson SK, Carr TJ, Levy MA, Tomaszek TA, Ijames CF, Smith WW, Zhao B, Janson CA, Abdel-Meguid SS, D'Alessio KJ, McQueney MS, Veber DF (1999) Potent dipeptidylketone inhibitors of the cysteine protease cathepsin K. Bioorg Med Chem 7:581–588PubMedCrossRefGoogle Scholar
  17. 17.
    Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 12:1396–1406PubMedCrossRefGoogle Scholar
  18. 18.
    Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M (2001) Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 16:1739–1746PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G (2007) A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 40:122–131PubMedCrossRefGoogle Scholar
  20. 20.
    Stroup GB, Kumar S, Jerome CP (2009) Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int 85(4):344–355PubMedCrossRefGoogle Scholar
  21. 21.
    Missbach M, Altmann E, Betschart C, Buhl T, Gamse R, Gasser JA, Green JR, Ishihara H, Jerome C, Kometani M, Susa M, Teno N, Toriyama K, Lattmann R (2005) AAE581, a potent and highly specific cathepsin K inhibitor, prevents bone resorption after oral treatment in rat and monkey. J Bone Miner Res 20(Suppl 1):S251Google Scholar
  22. 22.
    Jerome CP (1998) Primate models of osteoporosis. Lab Anim Sci 48:618–622PubMedGoogle Scholar
  23. 23.
    Bayne K (1996) Revised guide for the care and use of laboratory animals available. Am Physiol Society Physiologist 39(199):208–211Google Scholar
  24. 24.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  25. 25.
    Jerome CP, Power RA, Obasanjo IO, Register TC, Guidry M, Carlson CS, Weaver DS (1997) The androgenic anabolic steroid nandrolone decanoate prevents osteopenia and inhibits bone turnover in ovariectomized cynomolgus monkeys. Bone 20:355–364PubMedCrossRefGoogle Scholar
  26. 26.
    Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28:150–159PubMedCrossRefGoogle Scholar
  27. 27.
    Cusik T, Pennypacker B, Scott K, Duong L, Kimmel D (2009) Effects of odanacatib on bone mass, turnover and strength in the femoral neck of estrogen deficient adult rhesus monkeys. J Bone Miner Res 24(Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=3c062e5c-74c9-4be1-b2c9-2935ae73f57e. Accessed June 1, 2010
  28. 28.
    Pennypacker B, Wesolowski G, Heo J, Duong L (2009) Effects of odanacatib on central femur cortical bone in estrogen deficient adult rhesus monkeys. J Bone Miner Res 24(Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=a11932a7-b4c2-4d38-9a9d-4ec165bb13f2. Accessed June 1, 2010
  29. 29.
    Xiang A, Kanematsu M, Kumar S, Yamashita D, Kaise T, Kikkawa H, Asano S, Kinoshita M (2010) Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone 40(5):1231–1237CrossRefGoogle Scholar
  30. 30.
    Lees CJ, Register TC, Turner CH, Wang T, Stancill M, Jerome CP (2002) Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause 9:320–328PubMedCrossRefGoogle Scholar
  31. 31.
    Feher A, Koivunemi A, Koivunemi M, Fuchs RK, Burr DB, Phipps RJ, Reinwald S, Allen MR (2010) Bisphosphonates do not inhibit periosteal bone formation in estrogen deficient animals and allow enhanced bone modeling in response to mechanical loading. Bone 46(1):203–207PubMedCrossRefGoogle Scholar
  32. 32.
    Bare S, Recker S, Recker R, Kimmel D (2005) Influence of alendronate on periosteal and endocortical bone formation in the ilium of osteoporotic women. J Bone Miner Res 20(Suppl 1):SA414, Available at http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey={320D85D2-5D21-4529-A15C-8B342938C99F}&SKey={BEF5BC3E-1AC0-489B-A7FB-6F4FC82D96B1}&MKey={70A6304C-A41B-49FC-A4DF-C147A5E943F0}&AKey={D0C01D4F-E23B-45E2-ACD4-0AF8AC866B8B}. Accessed June 10, 2010Google Scholar
  33. 33.
    Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15(4):613–620PubMedCrossRefGoogle Scholar
  34. 34.
    Itabashi A, Kurata N, Sugita Y, Kawai Y (2006) Balicatib, a novel cathepsin K-inhibitor, increases serum intact PTH beyond diurnal patterns following 14-daily administration in Japanese postmenopausal women. J Bone Miner Res 21(suppl 1):S24Google Scholar
  35. 35.
    Fuller K, Lawrence KM, Ross JL, Grabowska UB, Shiroo M, Samuelsson B, Chambers TJ (2008) Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42(1):200–211PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  1. 1.Think Bone Consulting, Inc.LangleyUSA
  2. 2.Novartis Institutes for Biomedical ResearchBaselSwitzerland

Personalised recommendations