Osteoporosis International

, Volume 22, Issue 12, pp 3055–3066 | Cite as

In peripubertal girls, artistic gymnastics improves areal bone mineral density and femoral bone geometry without affecting serum OPG/RANKL levels

  • L. Maïmoun
  • O. Coste
  • D. Mariano-Goulart
  • F. Galtier
  • T. Mura
  • P. Philibert
  • K. Briot
  • F. Paris
  • C. Sultan
Original Article

Abstract

Summary

Peripubertal artistic gymnasts display elevated areal bone mineral density at various bone sites, despite delayed menarche and a high frequency of menstrual disorders, factors that may compromise bone health. The concomitant improvement in femoral bone geometry and strength suggested that this type of physical activity might have favourable clinical impact.

Introduction

The purpose of this study is to evaluate the effect of artistic gymnastics (GYM) on areal bone mineral density (aBMD), femoral bone geometry and bone markers and its relationship with the osteoprotegerin (OPG)/rank-ligand (RANKL) system in peripubertal girls.

Methods

Forty-six girls (age 10–17.2 years) were recruited for this study: 23 elite athletes in the GYM group (training 12–30 h/week, age at start of training 5.3 years) and 23 age-matched (±6 months; leisure physical activity ≤ 3 h/week) controls (CON). The aBMD at whole body, total proximal femur, lumbar spine, mid-radius and skull was determined using dual-X-ray absorptiometry. Hip structural analysis (HSA software) was applied at the femur to evaluate cross-sectional area (CSA, cm2), cross-sectional moment of inertia (CSMI, cm4), and the section modulus (Z, cm3) and buckling ratio at neck, intertrochanteric region and shaft. Markers of bone turnover and OPG/RANKL levels were also analysed.

Results

GYM had higher (5.5–16.4%) non-adjusted aBMD and adjusted aBMD for age, fat-free soft tissue and fat mass at all bone sites, skull excepted and the difference increased with age. In the three femoral regions adjusted for body weight and height, CSA (12.5–18%), CSMI (14–18%), Z (15.5–18.6%) and mean cortical thickness (13.6–21%) were higher in GYM than CON, while the buckling ratio (21–27.1%) was lower. Bone markers decreased with age in both groups and GYM presented higher values than CON only in the postmenarchal period. A similar increase in RANKL with age without OPG variation was observed for both groups.

Conclusion

GYM is associated not only with an increase in aBMD but also an improvement in bone geometry associated with an increase in bone remodelling. These adaptations seem to be independent of the OPG/RANKL system.

Keywords

Areal bone mineral density Bone geometry Bone mass acquisition Bone strength Intensive training Markers of bone turnover OPG/RANKL system Peripuberty 

References

  1. 1.
    Rutherford OM (1999) Is there a role for exercise in the prevention of osteoporotic fractures? Br J Sports Med 33:378–386PubMedCrossRefGoogle Scholar
  2. 2.
    Witzke KA, Snow CM (2000) Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc 32:1051–1057PubMedCrossRefGoogle Scholar
  3. 3.
    Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40:14–27PubMedCrossRefGoogle Scholar
  4. 4.
    Taaffe DR, Robinson TL, Snow CM, Marcus R (1997) High-impact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res 12:255–260PubMedCrossRefGoogle Scholar
  5. 5.
    Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158PubMedCrossRefGoogle Scholar
  6. 6.
    Tournis S, Michopoulou E, Fatouros IG, Paspati I, Michalopoulou M, Raptou P, Leontsini D, Avloniti A, Krekoukia M, Zouvelou V, Galanos A, Aggelousis N, Kambas A, Douroudos I, Lyritis GP, Taxildaris K, Pappaioannou N (2010) Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J Clin Endocrinol Metab 95:2755–2762PubMedCrossRefGoogle Scholar
  7. 7.
    Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18PubMedCrossRefGoogle Scholar
  8. 8.
    Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528PubMedCrossRefGoogle Scholar
  9. 9.
    Faulkner RA, Forwood MR, Beck TJ, Mafukidze JC, Russell K, Wallace W (2003) Strength indices of the proximal femur and shaft in prepubertal female gymnasts. Med Sci Sports Exerc 35:513–518PubMedCrossRefGoogle Scholar
  10. 10.
    Maimoun L, Coste O, Galtier F, Mura T, Mariano-Goulart D, Paris F, Sultan C (2010) Bone mineral density acquisition in peripubertal female rhythmic gymnasts is directly associated with plasma IGF1/IGF-binding protein 3 ratio. Eur J Endocrinol 163:157–164PubMedCrossRefGoogle Scholar
  11. 11.
    Maimoun L, Coste O, Jaussent A, Mariano-Goulart D, Sultan C, Paris F (2010) Bone mass acquisition in female rhythmic gymnasts during puberty: no direct role for leptin. Clin Endocrinol (Oxf) 72:604–611CrossRefGoogle Scholar
  12. 12.
    Herrmann M, Herrmann W (2004) The assessment of bone metabolism in female elite endurance athletes by biochemical bone markers. Clin Chem Lab Med 42:1384–1389PubMedCrossRefGoogle Scholar
  13. 13.
    Ziegler S, Niessner A, Richter B, Wirth S, Billensteiner E, Woloszczuk W, Slany J, Geyer G (2005) Endurance running acutely raises plasma osteoprotegerin and lowers plasma receptor activator of nuclear factor kappa B ligand. Metabolism 54:935–938PubMedCrossRefGoogle Scholar
  14. 14.
    Kerschan-Schindl K, Thalmann M, Sodeck GH, Skenderi K, Matalas AL, Grampp S, Ebner C, Pietschmann P (2009) A 246-km continuous running race causes significant changes in bone metabolism. Bone 45:1079–1083PubMedCrossRefGoogle Scholar
  15. 15.
    Rubin J, Murphy T, Nanes MS, Fan X (2000) Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278:C1126–C1132PubMedGoogle Scholar
  16. 16.
    Kobayashi Y, Hashimoto F, Miyamoto H, Kanaoka K, Miyazaki-Kawashita Y, Nakashima T, Shibata M, Kobayashi K, Kato Y, Sakai H (2000) Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J Bone Miner Res 15:1924–1934PubMedCrossRefGoogle Scholar
  17. 17.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRefGoogle Scholar
  18. 18.
    Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12PubMedCrossRefGoogle Scholar
  19. 19.
    Tanner J (1962) Growth at adolescence. Blackwell, OxfordGoogle Scholar
  20. 20.
    Greulich WW, Pyle SI (1959) Radiographic Atlas of skeletal development of hand and wrist, 2nd edn. Stanford University Press, StanfordGoogle Scholar
  21. 21.
    Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121PubMedCrossRefGoogle Scholar
  22. 22.
    Frost HM (1992) The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 7:253–261PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R (1995) Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 10:26–35PubMedCrossRefGoogle Scholar
  24. 24.
    Proctor KL, Adams WC, Shaffrath JD, Van Loan MD (2002) Upper-limb bone mineral density of female collegiate gymnasts versus controls. Med Sci Sports Exerc 34:1830–1835PubMedCrossRefGoogle Scholar
  25. 25.
    Helge EW, Kanstrup IL (2002) Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc 34:174–180PubMedCrossRefGoogle Scholar
  26. 26.
    Dowthwaite JN, DiStefano JG, Ploutz-Snyder RJ, Kanaley JA, Scerpella TA (2006) Maturity and activity-related differences in bone mineral density: Tanner I vs. II and gymnasts vs. non-gymnasts. Bone 39:895–900PubMedCrossRefGoogle Scholar
  27. 27.
    Erlandson MC, Kontulainen SA, Baxter-Jones AD (2010) Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos Int 22(1):75–84PubMedCrossRefGoogle Scholar
  28. 28.
    Laing EM, Massoni JA, Nickols-Richardson SM, Modlesky CM, O’Connor PJ, Lewis RD (2002) A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr 141:211–216PubMedCrossRefGoogle Scholar
  29. 29.
    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMedCrossRefGoogle Scholar
  30. 30.
    Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD (2006) Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int 17:231–236PubMedCrossRefGoogle Scholar
  31. 31.
    Janz KF, Gilmore JM, Levy SM, Letuchy EM, Burns TL, Beck TJ (2007) Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone 41:216–222PubMedCrossRefGoogle Scholar
  32. 32.
    Alwis G, Linden C, Stenevi-Lundgren S, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK (2008) A one-year exercise intervention program in pre-pubertal girls does not influence hip structure. BMC Musculoskelet Disord 9:9PubMedCrossRefGoogle Scholar
  33. 33.
    Erlandson MC, Sherar LB, Mirwald RL, Maffulli N, Baxter-Jones AD (2008) Growth and maturation of adolescent female gymnasts, swimmers, and tennis players. Med Sci Sports Exerc 40:34–42PubMedGoogle Scholar
  34. 34.
    Christo K, Prabhakaran R, Lamparello B, Cord J, Miller KK, Goldstein MA, Gupta N, Herzog DB, Klibanski A, Misra M (2008) Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics 121:1127–1136PubMedCrossRefGoogle Scholar
  35. 35.
    Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2009) Deleterious effect of late menarche on distal tibia microstructure in healthy 20-year-old and premenopausal middle-aged women. J Bone Miner Res 24:144–152PubMedCrossRefGoogle Scholar
  36. 36.
    Hind K, Truscott JG, Evans JA (2006) Low lumbar spine bone mineral density in both male and female endurance runners. Bone 39:880–885PubMedCrossRefGoogle Scholar
  37. 37.
    Kirchner EM, Lewis RD, O’Connor PJ (1995) Bone mineral density and dietary intake of female college gymnasts. Med Sci Sports Exerc 27:543–549PubMedGoogle Scholar
  38. 38.
    Bennell KL, Malcolm SA, Khan KM, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD (1997) Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 20:477–484PubMedCrossRefGoogle Scholar
  39. 39.
    Morel J, Combe B, Francisco J, Bernard J (2001) Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 12:152–157PubMedCrossRefGoogle Scholar
  40. 40.
    Maimoun L, Coste O, Puech AM, Peruchon E, Jaussent A, Paris F, Rossi M, Sultan C, Mariano-Goulart D (2008) No negative impact of reduced leptin secretion on bone metabolism in male decathletes. Eur J Appl Physiol 102:343–351PubMedCrossRefGoogle Scholar
  41. 41.
    Nickols-Richardson SM, O’Connor PJ, Shapses SA, Lewis RD (1999) Longitudinal bone mineral density changes in female child artistic gymnasts. J Bone Miner Res 14:994–1002PubMedCrossRefGoogle Scholar
  42. 42.
    van Coeverden SC, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf) 57:107–116CrossRefGoogle Scholar
  43. 43.
    Maimoun L, Sultan C (2010) Effects of physical activity on bone remodeling. Metabolism. doi:10.1016/j.metabol.2010.03.001
  44. 44.
    Courteix D, Rieth N, Thomas T, Van Praagh E, Benhamou CL, Collomp K, Lespessailles E, Jaffre C (2007) Preserved bone health in adolescent elite rhythmic gymnasts despite hypoleptinemia. Horm Res 68:20–27PubMedCrossRefGoogle Scholar
  45. 45.
    Wasilewska A, Rybi-Szuminska AA, Zoch-Zwierz W (2009) Serum osteoprotegrin (OPG) and receptor activator of nuclear factor kappaB (RANKL) in healthy children and adolescents. J Pediatr Endocrinol Metab 22:1099–1104PubMedCrossRefGoogle Scholar
  46. 46.
    Buzi F, Maccarinelli G, Guaragni B, Ruggeri F, Radetti G, Meini A, Mazzolari E, Cocchi D (2004) Serum osteoprotegerin and receptor activator of nuclear factors kB (RANKL) concentrations in normal children and in children with pubertal precocity, Turner’s syndrome and rheumatoid arthritis. Clin Endocrinol (Oxf) 60:87–91CrossRefGoogle Scholar
  47. 47.
    Gajewska J, Ambroszkiewicz J, Laskowska-Klita T (2006) Osteoprotegerin and C-telopeptide of type I collagen in Polish healthy children and adolescents. Adv Med Sci 51:269–272PubMedGoogle Scholar
  48. 48.
    Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 86:3162–3165PubMedCrossRefGoogle Scholar
  49. 49.
    Zebaze RM, Jones A, Welsh F, Knackstedt M, Seeman E (2005) Femoral neck shape and the spatial distribution of its mineral mass varies with its size: clinical and biomechanical implications. Bone 37:243–252PubMedCrossRefGoogle Scholar
  50. 50.
    Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam study. J Bone Miner Res 22:1781–1790PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2011

Authors and Affiliations

  • L. Maïmoun
    • 1
  • O. Coste
    • 1
    • 2
  • D. Mariano-Goulart
    • 3
  • F. Galtier
    • 4
    • 5
  • T. Mura
    • 5
    • 6
  • P. Philibert
    • 1
  • K. Briot
    • 7
  • F. Paris
    • 1
    • 8
  • C. Sultan
    • 1
    • 8
    • 9
  1. 1.Service d’Hormonologie, Hôpital LapeyronieCHU Montpellier et UMIMontpellierFrance
  2. 2.Direction Régionale de la Jeunesse, des Sports et Cohésion SocialeMontpellierFrance
  3. 3.Service de Médecine Nucléaire, Hôpital LapeyronieCHU MontpellierMontpellierFrance
  4. 4.Centre d’Investigation Clinique et Département des Maladies EndocriniennesCHRU MontpellierMontpellierFrance
  5. 5.CIC 1001, INSERMMontpellierFrance
  6. 6.Centre d’Investigation Clinique et Département d’information MédicaleCHRU MontpellierMontpellierFrance
  7. 7.Service de Rhumatologie, Hôpital CochinAPHP ParisParisFrance
  8. 8.Unité d’Endocrinologie Pédiatrique, Hôpital Arnaud de VilleneuveCHU Montpellier et UMIMontpellierFrance
  9. 9.Unité d’Endocrinologie PédiatriqueHôpital Arnaud de VilleneuveMontpellierFrance

Personalised recommendations