Osteoporosis International

, Volume 22, Issue 11, pp 2869–2877 | Cite as

Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures

  • P. D’Amelio
  • I. Roato
  • L. D’Amico
  • L. Veneziano
  • E. Suman
  • F. Sassi
  • G. Bisignano
  • R. Ferracini
  • G. Gargiulo
  • F. Castoldi
  • G. P. Pescarmona
  • G. C. Isaia
Original Article

Abstract

Summary

This study evaluates cytokines production in bone and bone marrow of patients with an osteoporotic fracture or with osteoarthritis by real time PCR, Western blot and immunohistochemistry. We demonstrate that the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in patients with osteoporotic fractures.

Introduction

Fragility fractures are the resultant of low bone mass and poor bone architecture typical of osteoporosis. Cytokines involved in the control of bone cell maturation and function are produced by both bone itself and bone marrow cells, but the roles of these two sources in its control and the amounts they produce are not clear. This study compares their production in patients with an osteoporotic fracture and those with osteoarthritis.

Methods

We evaluated 52 femoral heads from women subjected to hip-joint replacement surgery for femoral neck fractures due to low-energy trauma (37), or for osteoarthritis (15). Total RNA was extracted from both bone and bone marrow, and quantitative PCR was used to identify the receptor activator of nuclear factor kB Ligand (RANKL), osteoprotegerin (OPG), macrophage colony stimulating factor (M-CSF), transforming growth factor β (TGFβ), Dickoppf-1 (DKK-1) and sclerostin (SOST) expression. Immunohistochemistry and Western blot were performed in order to quantify and localize in bone and bone marrow the cytokines.

Results

We found an increase of RANKL/OPG ratio, M-CSF, SOST and DKK-1 in fractured patients, whereas TGFβ was increased in osteoarthritic bone. Bone marrow produced greater amounts of RANKL, M-CSF and TGFβ compared to bone, whereas the production of DKK-1 and SOST was higher in bone.

Conclusions

We show that bone marrow cells produced the greater amount of pro-osteoclastogenic cytokines, whereas bone cells produced higher amount of osteoblast inhibitors in patients with fragility fracture, thus the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in these patients.

Keywords

DKK-1 M-CSF Osteoporosis RANKL/OPG SOST TGFβ 

Notes

Funding sources

This study was supported by the Stroeder-SIOMMMS Young Investigator Award, by a grant from the Cassa di Risparmio di Torino (CRT) and by a grant from the Ministry for Education, the Universities and Research (MIUR).

PD and FS were supported by a fellowship from the Regione Piemonte.

Conflicts of interest

None.

Supplementary material

198_2010_1496_MOESM1_ESM.ppt (466 kb)
Supplemental figure Proteins expression in bone and bone marrow from fractured and OA patients. a Western blot analyses display of RANKL, TGFβ, M-CSF, SOST, OPG and DKK-1 expression in samples from fractured (lanes 1 to 5) and OA (lanes 6 to 10). Actin was used as control. The shown blot was obtained in bone marrow samples. b Graph represents the expression of measured cytokines in fractured and OA patients' bone marrow. Bars represent mean and SD expressed as optical density (O.D.). Asterisk is a p value = 0.000 and was calculated by means of Student's T test. c As in b, cytokines measured in bone, Single asterisk is a p value = 0.001. d As in b, cytokines measured in bone compared to those measured in bone marrow, white circle is a p value = 0.03 (PPT 465 kb)
198_2010_1496_MOESM2_ESM.doc (27 kb)
Supplemental table Gene probe and primer sequences. P, probe; F, forward; R, reverse. All the probes were labeled at the 5′ end with 6-carboxy fluorescein (FAM) and the 3′ end with 6-carboxy-tetramethyl rhodamine (TAMRA), the annealing temperature was always 58°C (DOC 27 kb)

References

  1. 1.
    Lane NE, Yao W (2010) Glucocorticoid-induced bone fragility. Ann N Y Acad Sci 1192:81–83PubMedCrossRefGoogle Scholar
  2. 2.
    Bertoldo F, Pancheri S, Zenari S, Boldini S (2010) Emerging drugs for the management of cancer treatment induced bone loss. Expert Opin Emerg Drugs 15:323–342PubMedCrossRefGoogle Scholar
  3. 3.
    National Institutes of Health (1984) Osteoporosis. National Institutes of Health Consensus Development Conference Statement. Natl Inst Health Consens Dev Conf Consens Statement 5(3):1–6Google Scholar
  4. 4.
    Ekman EF (2010) The role of the orthopaedic surgeon in minimizing mortality and morbidity associated with fragility fractures. J Am Acad Orthop Surg 18:278–285PubMedGoogle Scholar
  5. 5.
    D'Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100PubMedCrossRefGoogle Scholar
  6. 6.
    D'Amelio P, Isaia G (2009) Immune system and postmenopausal bone loss. CRBMM 7:261–267Google Scholar
  7. 7.
    Hofbauer LC, Kuhne CA, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 4:268–275PubMedGoogle Scholar
  8. 8.
    Seitz M, Loetscher P, Fey MF, Tobler A (1994) Constitutive mRNA and protein production of macrophage colony-stimulating factor but not of other cytokines by synovial fibroblasts from rheumatoid arthritis and osteoarthritis patients. Br J Rheumatol 33:613–619PubMedCrossRefGoogle Scholar
  9. 9.
    Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230PubMedGoogle Scholar
  10. 10.
    Grundt A, Grafe IA, Liegibel U, Sommer U, Nawroth P, Kasperk C (2009) Direct effects of osteoprotegerin on human bone cell metabolism. Biochem Biophys Res Commun 389:550–555PubMedCrossRefGoogle Scholar
  11. 11.
    Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 43:2523–2530PubMedCrossRefGoogle Scholar
  12. 12.
    Leibbrandt A, Penninger JM (2009) RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv Exp Med Biol 649:100–113PubMedCrossRefGoogle Scholar
  13. 13.
    Appel H, Loddenkemper C, Miossec P (2009) Rheumatoid arthritis and ankylosing spondylitis—pathology of acute inflammation. Clin Exp Rheumatol 27:S15–S19PubMedGoogle Scholar
  14. 14.
    Roato I, D'Amelio P, Gorassini E, Grimaldi A, Bonello L, Fiori C, Delsedime L, Tizzani A, De Libero A, Isaia G, Ferracini R (2008) Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS ONE 3:e3627PubMedCrossRefGoogle Scholar
  15. 15.
    Roato I, Gorassini E, Buffoni L, Lyberis P, Ruffini E, Bonello L, Baldi I, Ciuffreda L, Mussa A, Ferracini R (2008) Spontaneous osteoclastogenesis is a predictive factor for bone metastases from non-small cell lung cancer. Lung Cancer 61:109–116PubMedCrossRefGoogle Scholar
  16. 16.
    Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215:578–587PubMedCrossRefGoogle Scholar
  17. 17.
    Marques-Pinheiro A, Levasseur R, Cormier C, Bonneau J, Boileau C, Varret M, Abifadel M, Allanore Y (2010) Novel LRP5 gene mutation in a patient with osteoporosis-pseudoglioma syndrome. Joint Bone Spine 77(2):151–153PubMedCrossRefGoogle Scholar
  18. 18.
    Frost M, Andersen TE, Yadav V, Brixen K, Karsenty G, Kassem M (2010) Patients with high bone mass phenotype due to Lrp5-T253I mutation have low plasma levels of serotonin. J Bone Miner Res 25(3):673–675PubMedCrossRefGoogle Scholar
  19. 19.
    Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, Haibel H, Baraliakos X, Hempfing A, Rudwaleit M, Sieper J, Schett G (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60:3257–3262PubMedCrossRefGoogle Scholar
  20. 20.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163PubMedCrossRefGoogle Scholar
  21. 21.
    Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R (2005) Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329:177–181PubMedCrossRefGoogle Scholar
  22. 22.
    Ohnaka K, Taniguchi H, Kawate H, Nawata H, Takayanagi R (2004) Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun 318:259–264PubMedCrossRefGoogle Scholar
  23. 23.
    Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661PubMedCrossRefGoogle Scholar
  24. 24.
    Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641PubMedCrossRefGoogle Scholar
  25. 25.
    Bostrom MP (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res 355:S116–S123PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254PubMedGoogle Scholar
  27. 27.
    D'Amelio P, Cristofaro MA, Grimaldi A, Ravazzoli M, Pluviano F, Grosso E, Pescarmona GP, Isaia GC (2010) The role of circulating bone cell precursors in fracture healing. Calcif Tissue Int 86:463–469PubMedCrossRefGoogle Scholar
  28. 28.
    D'Amelio P, Tamone C, Pluviano F, Di Stefano M, Isaia G (2005) Effects of lifestyle and risk factors on bone mineral density in a cohort of Italian women: suggestion for a new decision rule. Calcif Tissue Int 77:72–78PubMedCrossRefGoogle Scholar
  29. 29.
    National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 17:1–45Google Scholar
  30. 30.
    Leibbrandt A, Penninger JM (2009) RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol 647:130–145PubMedCrossRefGoogle Scholar
  31. 31.
    Dobnig H, Hofbauer LC, Viereck V, Obermayer-Pietsch B, Fahrleitner-Pammer A (2006) Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 17:693–703PubMedCrossRefGoogle Scholar
  32. 32.
    Ross FP, Teitelbaum SL (2005) alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208:88–105PubMedCrossRefGoogle Scholar
  33. 33.
    Velasco J, Zarrabeitia MT, Prieto JR, Perez-Castrillon JL, Perez-Aguilar MD, Perez-Nunez MI, Sanudo C, Hernandez-Elena J, Calvo I, Ortiz F, Gonzalez-Macias J, Riancho JA (2009) Wnt pathway genes in osteoporosis and osteoarthritis: differential expression and genetic association study. Osteoporos Int 21:109–118PubMedCrossRefGoogle Scholar
  34. 34.
    Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, Galera P, Boumediene K (2008) Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res 49:293–297PubMedCrossRefGoogle Scholar
  35. 35.
    Corino A, D'Amelio P, Gancia R, Del Rizzo P, Gabasio S, Limone P, Isaia G (2007) Hypovitaminosis D in internal medicine inpatients. Calcif Tissue Int 80:76–80PubMedCrossRefGoogle Scholar
  36. 36.
    Isaia G, Giorgino R, Rini GB, Bevilacqua M, Maugeri D, Adami S (2003) Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int 14:577–582PubMedCrossRefGoogle Scholar
  37. 37.
    Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, van den Berg WB (2010) The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum 62:647–657PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • P. D’Amelio
    • 1
  • I. Roato
    • 2
  • L. D’Amico
    • 2
  • L. Veneziano
    • 1
  • E. Suman
    • 1
  • F. Sassi
    • 1
  • G. Bisignano
    • 1
  • R. Ferracini
    • 2
    • 3
  • G. Gargiulo
    • 3
  • F. Castoldi
    • 4
  • G. P. Pescarmona
    • 2
    • 5
  • G. C. Isaia
    • 1
  1. 1.Gerontology Section, Department of Surgical and Medical DisciplinesUniversity of TorinoTorinoItaly
  2. 2.CeRMS (Center for Research and Medical Studies)San Giovanni Battista HospitalTorinoItaly
  3. 3.Department of OrthopaedicsSan Giovanni Battista HospitalTorinoItaly
  4. 4.Department of Orthopaedics and TraumatologyUniversity of TorinoTorinoItaly
  5. 5.Department of Genetics, Biology and BiochemistryUniversity of TorinoTorinoItaly

Personalised recommendations