Osteoporosis International

, Volume 22, Issue 9, pp 2421–2437 | Cite as

Lifestyle factors, medications, and disease influence bone mineral density in older men: findings from the CHAMP study

  • K. BleicherEmail author
  • R. G. Cumming
  • V. Naganathan
  • M. J. Seibel
  • P. N. Sambrook
  • F. M. Blyth
  • D. G. Le Couteur
  • D. J. Handelsman
  • H. M. Creasey
  • L. M. Waite
Original Article



Aging alone is not the only factor accounting for poor bone health in older men. There are modifiable factors and lifestyle choices that may influence bone health and result in higher bone density and lower fracture risk even in very old men.


The aim of this cross-sectional analysis was to identify the factors associated with areal bone mineral density (BMD) and their relative contribution in older men.


The Concord Health and Ageing in Men Project is a population-based study in Sydney, Australia, involving 1,705 men aged 70–97. Data were collected using questionnaires and clinical assessments. BMD of the hip and spine was measured by dual X-ray absorptiometry.


In multivariate regression models, BMD of the hip was associated with body weight and bone loading physical activities, but not independently with age. The positive relationship between higher BMD and recreational activities is attenuated with age. Factors independently associated with lower BMD at the hip were inability to stand from sitting, a history of kidney stones, thyroxine use, and Asian birth and at the spine, chronic obstructive pulmonary disease, paternal fracture history, and thyroxine use. Higher body weight, participation in dancing, tennis or jogging, quadriceps strength, alcohol consumption, and statin use were associated with higher hip BMD, while older age, osteoarthritis, higher body weight, and aspirin use were associated with higher spinal BMD.


Maintaining body weight, physical activity, and strength were positively associated with BMD even in very elderly men. Other parameters were also found to influence BMD, and once these were included in multivariate analysis, age was no longer associated with BMD. This suggests that age-related diseases, lifestyle choices, and medications influence BMD rather than age per se.


Aging Bone mineral density Exercise Men Population studies Risk factors 



The CHAMP Study is funded by the Australian National Health and Medical Research Council (NHMRC Project Grant No. 301916) and the Ageing and Alzheimer’s Research Foundation (AARF). Kerrin Bleicher’s Ph.D. research is supported by the AARF scholarship. Many thanks to the scientists, Lynley Robinson and Beverly White, for assessing the scans for vertebral deformities.

Conflicts of interest



  1. 1.
    Kanis JA et al (2000) Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 11(8):669–674PubMedCrossRefGoogle Scholar
  2. 2.
    Cummings SR et al (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21(10):1550–1556PubMedCrossRefGoogle Scholar
  3. 3.
    Bass E et al (2007) Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann Epidemiol 17(7):514–519PubMedCrossRefGoogle Scholar
  4. 4.
    Szulc P et al (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16(10):1184–1192PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshimura N et al (2002) Bone loss at the lumbar spine and the proximal femur in a rural Japanese community, 1990–2000: the Miyama study. Osteoporos Int 13(10):803–808PubMedCrossRefGoogle Scholar
  6. 6.
    Hannan MT et al (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15(4):710–720PubMedCrossRefGoogle Scholar
  7. 7.
    Orwoll ES et al (2000) Determinants of bone mineral density in older men. Osteoporos Int 11(10):815–821PubMedCrossRefGoogle Scholar
  8. 8.
    Lunt M et al (2001) The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: the EVOS study. Osteoporos Int 12(8):688–698PubMedCrossRefGoogle Scholar
  9. 9.
    Lau EM et al (2006) The determinants of bone mineral density in Chinese men—results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos Int 17(2):297–303PubMedCrossRefGoogle Scholar
  10. 10.
    Glynn NW et al (1995) Determinants of bone mineral density in older men. J Bone Miner Res 10(11):1769–1777PubMedCrossRefGoogle Scholar
  11. 11.
    Chiu G et al (2009) Relative contribution of multiple determinants to bone density in men. Osteoporoisis Int 20:2035–2047CrossRefGoogle Scholar
  12. 12.
    Cauley JA et al (2005) Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 16(12):1525–1537PubMedCrossRefGoogle Scholar
  13. 13.
    Papaioannou A et al (2009) Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int 20:507–518PubMedCrossRefGoogle Scholar
  14. 14.
    Huuskonen J et al (2000) Determinants of bone mineral density in middle aged men: a population-based study. Osteoporos Int 11(8):702–708PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen TV, Center JR, Eisman JA (2000) Osteoporosis in elderly men and women: effects of dietary calcium, physical activity, and body mass index. J Bone Miner Res 15(2):322–331PubMedCrossRefGoogle Scholar
  16. 16.
    Jones G et al (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. Bmj 309(6956):691–695PubMedGoogle Scholar
  17. 17.
    Dennison E et al (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 10(5):384–391PubMedCrossRefGoogle Scholar
  18. 18.
    Burger H et al (1998) Risk factors for increased bone loss in an elderly population: the Rotterdam study. Am J Epidemiol 147(9):871PubMedGoogle Scholar
  19. 19.
    NHMRC, Australian Alcohol Guidelines: Health Risks and Benefits. Canberra, NHMRC, N.H.a.M.R. Council, Editor. 2001, Commonwealth of AustraliaGoogle Scholar
  20. 20.
    Blyth FM et al (2008) Pain, frailty and comorbidity on older men: the CHAMP study. Pain 140(1):224–230PubMedCrossRefGoogle Scholar
  21. 21.
    Fried L et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Med Sci 56(3):146CrossRefGoogle Scholar
  22. 22.
    Washburn RA et al (1999) The Physical Activity Scale for the Elderly (PASE): evidence for validity. J Clin Epidemiol 52(7):643–651PubMedCrossRefGoogle Scholar
  23. 23.
    Sherrington C, Lord S (2005) Reliability of simple portable tests of physical performance in older people after hip fracture. Clin Rehabil 19(5):496PubMedCrossRefGoogle Scholar
  24. 24.
    Jorm AF (2004) The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): a review. Int Psychogeriatr 16(03):275–293PubMedCrossRefGoogle Scholar
  25. 25.
    Szulc P et al (2000) Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone 26(2):123–1229PubMedCrossRefGoogle Scholar
  26. 26.
    Liu H et al (2008) Screening for osteoporosis in men: a systematic review for an American College of Physicians Guideline. Ann Intern Med 148(9):685–701PubMedGoogle Scholar
  27. 27.
    Nguyen ND et al (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18(8):1109–1117PubMedCrossRefGoogle Scholar
  28. 28.
    Kanis JA et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397PubMedCrossRefGoogle Scholar
  29. 29.
    Paffenbarger RS, Wing AL, Hyde RT (1995) Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 142(9):889–903PubMedGoogle Scholar
  30. 30.
    Turner C et al (2009) Mechanobiology of the skeleton. Science Signaling 2(68):pt3PubMedCrossRefGoogle Scholar
  31. 31.
    Frost HM (1999) Why do bone strength and "mass" in aging adults become unresponsive to vigorous exercise? Insights of the Utah paradigm. J Bone Miner Metab 17(2):90–97PubMedCrossRefGoogle Scholar
  32. 32.
    Brin I et al (1981) Rapid palatal expansion in cats: effect of age on sutural cyclic nucleotides. Am J Orthod Dentofacial Orthop 79(2):162–175Google Scholar
  33. 33.
    Rubin CT, Bain SD, McLeod KJ (1992) Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 50(4):306–313PubMedCrossRefGoogle Scholar
  34. 34.
    Srinivasan S et al (2003) Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone 33(6):946–955PubMedCrossRefGoogle Scholar
  35. 35.
    Leppänen O et al (2008) Pathogenesis of age-related osteoporosis: impaired mechano-responsiveness of bone is not the culprit. PLoS ONE 3(7):e2540PubMedCrossRefGoogle Scholar
  36. 36.
    Cheung E et al (2005) Determinants of bone mineral density in Chinese men. Osteoporos Int 16(12):1481–1486PubMedCrossRefGoogle Scholar
  37. 37.
    Lau EM et al (2005) Prevalence of and risk factors for sarcopenia in elderly Chinese men and women. J Gerontol A Biol Sci Med Sci 60(2):213–216PubMedCrossRefGoogle Scholar
  38. 38.
    Cauley JA et al (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. Jama 293(17):2102–2108PubMedCrossRefGoogle Scholar
  39. 39.
    Uzzan B et al (2007) Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone 40(6):1581–1587PubMedCrossRefGoogle Scholar
  40. 40.
    Tang Q et al (2008) Statins: under investigation for increasing bone mineral density and augmenting fracture healing. Expert Opin Investig Drugs 17(10):1435–1463PubMedCrossRefGoogle Scholar
  41. 41.
    Carbone LD et al (1795) Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res 18(10):1795–1802CrossRefGoogle Scholar
  42. 42.
    Yamaza T, Akiyama K, Shi S (2008) Is aspirin treatment an appropriate intervention for osteoporosis? Future Rheumatol 3(6):499–502CrossRefGoogle Scholar
  43. 43.
    Jodar E et al (2001) Bone mineral density in male patients with L-thyroxine suppressive therapy and Graves disease. Calcif Tissue Int 69(2):84–87PubMedCrossRefGoogle Scholar
  44. 44.
    Karner I et al (2005) Bone mineral density changes and bone turnover in thyroid carcinoma patients treated with supraphysiologic doses of thyroxine. Eur J Med Res 10(11):480PubMedGoogle Scholar
  45. 45.
    Sheppard M, Holder R, Franklyn J (2002) Levothyroxine treatment and occurrence of fracture of the hip. Arch Intern Med 162(3):338PubMedCrossRefGoogle Scholar
  46. 46.
    Papi G et al (2005) A clinical and therapeutic approach to thyrotoxicosis with thyroid-stimulating hormone suppression only. Am J Med 118(4):349–361PubMedCrossRefGoogle Scholar
  47. 47.
    Franco C et al (2009) Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int 20(11):1881–1887PubMedCrossRefGoogle Scholar
  48. 48.
    Nuti R et al (2009) Vertebral fractures in patients with chronic obstructive pulmonary disease: the EOLO study. Osteoporos Int 20(6):989–998PubMedCrossRefGoogle Scholar
  49. 49.
    Cumming RG et al (2009) Cohort profile: the Concord Health and Ageing in Men Project (CHAMP). Int J Epidemiol 38(2):374–378PubMedCrossRefGoogle Scholar
  50. 50.
    Holden C, McLaclan R, Pitts M (2005) Men in Australia Telephone Survey (MATeS): a national survey of the reproductive health and concerns of middle-aged and older Australian men. Lancet 366:218–224PubMedCrossRefGoogle Scholar
  51. 51.
    Trivedi D, Khaw K (2001) Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 12(4):259–265PubMedCrossRefGoogle Scholar
  52. 52.
    Fuerst T et al (2009) Evaluation of vertebral fracture assessment by dual X-ray absorptiometry in a multicenter setting. Osteoporos Int 20:1199–1205PubMedCrossRefGoogle Scholar
  53. 53.
    Schousboe J et al (2008) Vertebral fracture assessment: the 2007 ISCD official positions. J Clin Densitom 11(1):92–108PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • K. Bleicher
    • 1
    Email author
  • R. G. Cumming
    • 1
  • V. Naganathan
    • 2
  • M. J. Seibel
    • 3
  • P. N. Sambrook
    • 4
  • F. M. Blyth
    • 2
  • D. G. Le Couteur
    • 2
  • D. J. Handelsman
    • 2
  • H. M. Creasey
    • 2
  • L. M. Waite
    • 2
  1. 1.School of Public HealthUniversity of SydneySydneyAustralia
  2. 2.Centre for Education and Research on Ageing, Concord HospitalUniversity of SydneyConcordAustralia
  3. 3.ANZAC Research InstituteBone Research ProgramConcordAustralia
  4. 4.Royal North Shore Hospital, Institute of Bone and Joint ResearchUniversity of SydneySydneyAustralia

Personalised recommendations