Osteoporosis International

, Volume 22, Issue 6, pp 1907–1913 | Cite as

The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep

  • J. Xiao
  • H. Zhou
  • L. Zhao
  • Y. Sun
  • S. Guan
  • B. LiuEmail author
  • L. KongEmail author
Original Article



Hydrofluoric etching and anodized hierarchical micro/nanotextured surface titanium implant was placed in mandibles of ovariectomized sheep for 12 weeks, and it showed improved osseointegration by resonance frequency analysis (RFA), microcomputed tomography (micro-CT) evaluation, histomorphometry, and biomechanical test.


This study aimed to investigate the effects of micro/nanotextured titanium implant on osseointegration in ovariectomized (OVX) sheep.


The hierarchical micro/nanotextured surface of titanium implant was fabricated by acid in 0.5% (w/v) hydrofluoric (HF) and anodized in HF acid electrolytes with a DC power of 20 V, and the machined surface implants with no treatment served as control group. The implants were placed in mandibles of OVX sheep, respectively. Twelve weeks after implantation, RFA, microcomputed tomography, histomorphometry, and biomechanical tests were applied to detect the osseointegration of the two groups.


The implant stability quotient (ISQ) values, the maximum pull-out forces, and the bone–implant contact (BIC) were 65.5 ± 6.3, 490.6 ± 72.7 N, and 58.31 ± 5.79% in the micro/nanogroup and 58.3 ± 8.9, 394.5 ± 54.5 N, and 46.85 ± 5.04% in the control group, respectively. There was no significant difference between the two groups in ISQ values (p > 0.05), but in the micro/nanogroup, the maximal pull-out force and the BIC were increased significantly (p < 0.05 or p < 0.01). Micro-CT analysis showed that the bone volume ratio and the trabecular number increased significantly (p < 0.01), and the trabecular separation decreased significantly (p < 0.05) in the micro/nanogroup.


Implant modification by HF acid etching and anodization to form a hierarchical micro/nanotextured surface could improve titanium implant osseointegration in OVX sheep 12 weeks after implantation.


Anodization Dental implant Hydrofluoric etching Micro/nanotexture Osteoporosis Surface modification 



This work was supported by grants from the nature Science Foundation of China (project no. 30900284).

Conflicts of interest



  1. 1.
    Ekelund JA, Lindquist LW, Carlsson GE, Jemt T (2003) Implant treatment in the edentulous mandible: a prospective study on Branemark system implants over more than 20 years. Int J Prosthodont 16:602–608PubMedGoogle Scholar
  2. 2.
    Goiato MC, Pellizzer EP, dos Santos DM, Barao VA, de Carvalho BM, Magro-Filho O, Garcia IR Jr (2009) Clinical viability of immediate loading of dental implants: part I—factors for success. J Craniofac Surg 20:2139–2142PubMedCrossRefGoogle Scholar
  3. 3.
    Alsaadi G, Quirynen M, Komarek A, van Steenberghe D (2008) Impact of local and systemic factors on the incidence of late oral implant loss. Clin Oral Implants Res 19:670–676PubMedGoogle Scholar
  4. 4.
    Curran D, Maravic M, Kiefer P, Tochon V, Fardellone P (2010) Epidemiology of osteoporosis-related fractures in France: a literature review. Joint Bone Spine. doi: 10.1016/j.jbspin.2010.02.006
  5. 5.
    Deguchi T, Yoshihara A, Hanada N, Miyazaki H (2008) Relationship between mandibular inferior cortex and general bone metabolism in older adults. Osteoporos Int 19:935–940PubMedCrossRefGoogle Scholar
  6. 6.
    Keller JC, Stewart M, Roehm M, Schneider GB (2004) Osteoporosis-like bone conditions affect osseointegration of implants. Int J Oral Maxillofac Implants 19:687–694PubMedGoogle Scholar
  7. 7.
    Yildiz A, Esen E, Kurkcu M, Damlar I, Daglioglu K, Akova T (2010) Effect of zoledronic acid on osseointegration of titanium implants: an experimental study in an ovariectomized rabbit model. J Oral Maxillofac Surg 68:515–523PubMedCrossRefGoogle Scholar
  8. 8.
    Tsolaki IN, Madianos PN, Vrotsos JA (2009) Outcomes of dental implants in osteoporotic patients. A literature review. J Prosthodont 18:309–323PubMedCrossRefGoogle Scholar
  9. 9.
    Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y (2008) Biomimetic approach to dental implants. Curr Pharm Des 14:2201–2211PubMedCrossRefGoogle Scholar
  10. 10.
    Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials 29:3822–3835PubMedCrossRefGoogle Scholar
  11. 11.
    Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178PubMedCrossRefGoogle Scholar
  12. 12.
    Li Y, Zou S, Wang D, Feng G, Bao C, Hu J (2010) The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials 31:3266–3273PubMedCrossRefGoogle Scholar
  13. 13.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102PubMedCrossRefGoogle Scholar
  14. 14.
    Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H, Chiou WA, Ogawa T (2009) Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30:5319–5329PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao L, Mei S, Chu PK, Zhang Y, Wu Z (2010) The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31:5072–5082PubMedCrossRefGoogle Scholar
  16. 16.
    Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, Sang HX, Fu SC, Han YS (2008) Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys 30:1112–1118PubMedCrossRefGoogle Scholar
  17. 17.
    Fini M, Giavaresi G, Rimondini L, Giardino R (2002) Titanium alloy osseointegration in cancellous and cortical bone of ovariectomized animals: histomorphometric and bone hardness measurements. Int J Oral Maxillofac Implants 17:28–37PubMedGoogle Scholar
  18. 18.
    Cho P, Schneider GB, Krizan K, Keller JC (2004) Examination of the bone–implant interface in experimentally induced osteoporotic bone. Implant Dent 13:79–87PubMedCrossRefGoogle Scholar
  19. 19.
    Pattijn V, Jaecques SV, De Smet E, Muraru L, Van Lierde C, Van der Perre G, Naert I, Vander Sloten J (2007) Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer. Med Eng Phys 29:182–190PubMedCrossRefGoogle Scholar
  20. 20.
    Monjo M, Lamolle SF, Lyngstadaas SP, Ronold HJ, Ellingsen JE (2008) In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Biomaterials 29:3771–3780PubMedCrossRefGoogle Scholar
  21. 21.
    Lamolle SF, Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ (2009) Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. J Biomed Mater Res A 88:581–588PubMedGoogle Scholar
  22. 22.
    Holahan CM, Koka S, Kennel KA, Weaver AL, Assad DA, Regennitter FJ, Kademani D (2008) Effect of osteoporotic status on the survival of titanium dental implants. Int J Oral Maxillofac Implants 23:905–910PubMedGoogle Scholar
  23. 23.
    Amorim MA, Takayama L, Jorgetti V, Pereira RM (2007) Comparative study of axial and femoral bone mineral density and parameters of mandibular bone quality in patients receiving dental implants. Osteoporos Int 18:703–709PubMedCrossRefGoogle Scholar
  24. 24.
    Mori H, Manabe M, Kurachi Y, Nagumo M (1997) Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg 55:351–361PubMedCrossRefGoogle Scholar
  25. 25.
    Friberg B, Ekestubbe A, Mellstrom D, Sennerby L (2001) Branemark implants and osteoporosis: a clinical exploratory study. Clin Implant Dent Relat Res 3:50–56PubMedCrossRefGoogle Scholar
  26. 26.
    Alsaadi G, Quirynen M, Komarek A, van Steenberghe D (2007) Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J Clin Periodontol 34:610–617PubMedCrossRefGoogle Scholar
  27. 27.
    von Wowern N, Gotfredsen K (2001) Implant-supported overdentures, a prevention of bone loss in edentulous mandibles? A 5-year follow-up study. Clin Oral Implants Res 12:19–25CrossRefGoogle Scholar
  28. 28.
    Bornstein MM, Cionca N, Mombelli A (2009) Systemic conditions and treatments as risks for implant therapy. Int J Oral Maxillofac Implants 24(Suppl):12–27PubMedGoogle Scholar
  29. 29.
    Madrid C, Sanz M (2009) What impact do systemically administrated bisphosphonates have on oral implant therapy? A systematic review. Clin Oral Implants Res 20(Suppl 4):87–95PubMedCrossRefGoogle Scholar
  30. 30.
    Ma W, Wei JH, Li YZ, Wang XM, Shi HY, Tsutsumi S, Li DH (2008) Histological evaluation and surface componential analysis of modified micro-arc oxidation-treated titanium implants. J Biomed Mater Res B Appl Biomater 86:162–169PubMedGoogle Scholar
  31. 31.
    Daugaard H, Elmengaard B, Bechtold JE, Soballe K (2008) Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture. J Biomed Mater Res A 87:434–440PubMedGoogle Scholar
  32. 32.
    Gao L, Feng B, Wang J, Lu X, Liu D, Qu S, Weng J (2009) Micro/nanostructural porous surface on titanium and bioactivity. J Biomed Mater Res B Appl Biomater 89B:335–341PubMedCrossRefGoogle Scholar
  33. 33.
    Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711PubMedCrossRefGoogle Scholar
  34. 34.
    Park JW, Kim HK, Kim YJ, An CH, Hanawa T (2009) Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. Clin Oral Implants Res 20:684–690PubMedCrossRefGoogle Scholar
  35. 35.
    Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE (2009) The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30:736–742PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Surgery, School of StomatologyThe Fourth Military Medical UniversityXi’ anPeople’s Republic of China
  2. 2.Department of StomatologyPLA 252 HospitalBaodingPeople’s Republic of China
  3. 3.Department of Medical and Education, School of StomatologyThe Fourth Military Medical UniversityXi’anPeople’s Republic of China

Personalised recommendations