Advertisement

Osteoporosis International

, Volume 22, Issue 4, pp 1199–1209 | Cite as

Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis

  • I. PeterEmail author
  • M. D. Crosier
  • M. Yoshida
  • S. L. Booth
  • L. A. Cupples
  • B. Dawson-Hughes
  • D. Karasik
  • D. P. Kiel
  • J. M. Ordovas
  • T. A. Trikalinos
Original Article

Abstract

Summary

To determine the association of the Apolipoprotein E (APOE) E4 gene polymorphism with bone mineral density (BMD) and fractures we conducted a meta-analysis of 17 reports. Despite lower trochanteric and lumbar BMD in APOE4 carriers, there is insufficient evidence to support a consistent association of APOE with bone health.

Introduction

APOE has been studied for its potential role in osteoporosis risk. It is hypothesized that genetic variation at APOE locus, known as E2, E3, and E4, may modulate BMD through its effects on lipoproteins and vitamin K transport. The purpose of this study was to determine the association of the APOE-E4 gene polymorphism with bone-related phenotypes.

Methods

We conducted a meta-analysis that combined newly analyzed individual data from two community-based cohorts, the Framingham Offspring Study (N = 1,495) and the vitamin K clinical trial (N = 377), with 15 other eligible published reports. Bone phenotypes included BMD measurements of the hip (total hip and trochanteric and femoral neck sites) and lumbar spine (from the L2 to L4 vertebrae) and prevalence or incidence of vertebral, hip, and other fractures.

Results

In sex-pooled analyses, APOE4 carriers had a 0.018 g/cm2 lower weighted mean trochanteric BMD than non carriers (p = 0.0002) with no evidence for between-study heterogeneity. A significant association was also detected with lumbar spine BMD (p = 0.006); however, inter-study heterogeneity was observed. Associations with lumbar spine and trochanteric BMD were observed predominantly in women and became less significant in meta-regression (p = 0.055 and 0.01, respectively). There were no consistent associations of APOE4 genotype with BMD at other skeletal sites or with fracture risk.

Conclusions

Based on these findings, there is insufficient evidence to support a strong and consistent association of the APOE genotype with BMD and fracture incidence.

Keywords

Apolipoprotein E BMD Fracture Meta-analysis Polymorphism 

Notes

Conflicts of interest

None.

Supplementary material

198_2010_1311_MOESM1_ESM.doc (250 kb)
Figure S1 quorum flow chart of literature review (DOC 249 kb)

References

  1. 1.
    Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC (2002) Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 155:487–495PubMedCrossRefGoogle Scholar
  2. 2.
    Schilling AF, Schinke T, Munch C, Gebauer M, Niemeier A, Priemel M, Streichert T, Rueger JM, Amling M (2005) Increased bone formation in mice lacking apolipoprotein E. J Bone Miner Res 20:274–282PubMedCrossRefGoogle Scholar
  3. 3.
    Long JR, Liu PY, Liu YJ, Lu Y, Shen H, Zhao LJ, Xiong DH, Deng HW (2004) APOE haplotypes influence bone mineral density in Caucasian males but not females. Calcif Tissue Int 75:299–304PubMedCrossRefGoogle Scholar
  4. 4.
    Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y (1997) Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 12:1438–1445PubMedCrossRefGoogle Scholar
  5. 5.
    Johnston JM, Cauley JA, Ganguli M (1999) APOE 4 and hip fracture risk in a community-based study of older adults. J Am Geriatr Soc 47:1342–1345PubMedGoogle Scholar
  6. 6.
    Macdonald HM, McGuigan FE, Lanham-New SA, Fraser WD, Ralston SH, Reid DM (2008) Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr 87:1513–1520PubMedGoogle Scholar
  7. 7.
    Pluijm SM, Dik MG, Jonker C, Deeg DJ, van Kamp GJ, Lips P (2002) Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos Int 13:701–709PubMedCrossRefGoogle Scholar
  8. 8.
    von Muhlen DG, Barrett-Connor E, Schneider DL, Morin PA, Parry P (2001) Osteoporosis and apolipoprotein E genotype in older adults: the Rancho Bernardo study. Osteoporos Int 12:332–335CrossRefGoogle Scholar
  9. 9.
    Schoofs MW, van der Klift M, Hofman A, van Duijn CM, Stricker BH, Pols HA, Uitterlinden AG (2004) ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: the Rotterdam study. J Bone Miner Res 19:1490–1496PubMedCrossRefGoogle Scholar
  10. 10.
    Efstathiadou Z, Koukoulis G, Stakias N, Challa A, Tsatsoulis A (2004) Apolipoprotein E polymorphism is not associated with spinal bone mineral density in peri- and postmenopausal Greek women. Maturitas 48:259–264PubMedCrossRefGoogle Scholar
  11. 11.
    Stulc T, Ceska R, Horinek A, Stepan J (2000) Bone mineral density in patients with apolipoprotein E type 2/2 and 4/4 genotype. Physiol Res 49:435–439PubMedGoogle Scholar
  12. 12.
    Cupples LA, D’Agostino RB, Anderson K, Kannel WB (1988) Comparison of baseline and repeated measure covariate techniques in the Framingham Heart Study. Stat Med 7:205–222PubMedCrossRefGoogle Scholar
  13. 13.
    Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B (2008) Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab 93:1217–1223PubMedCrossRefGoogle Scholar
  14. 14.
    Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham Offspring Study. Am J Epidemiol 110:281–290PubMedGoogle Scholar
  15. 15.
    Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB (2007) Race/ethnic differences in bone mineral density in men. Osteoporos Int 18:943–953PubMedCrossRefGoogle Scholar
  16. 16.
    McNamara JR, Schaefer EJ (1987) Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin Chim Acta 166:1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Washburn RA, Ficker JL (1999) Physical Activity Scale for the Elderly (PASE): the relationship with activity measured by a portable accelerometer. J Sports Med Phys Fit 39:336–340Google Scholar
  18. 18.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  19. 19.
    Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548PubMedGoogle Scholar
  20. 20.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedCrossRefGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRefGoogle Scholar
  22. 22.
    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309PubMedCrossRefGoogle Scholar
  23. 23.
    Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP (2006) Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 163:300–309PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace, B., Schmid CH, Lau J, Trikalinos TA. (2009) Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Research Methodol 9:80Google Scholar
  25. 25.
    Lee SI, Lee SY, Yoo WH (2005) Association of apolipoprotein E polymorphism with bone mineral density in postmenopausal women with rheumatoid arthritis. Rheumatol 44:1067–1068CrossRefGoogle Scholar
  26. 26.
    Theppeang K, Glass TA, Bandeen-Roche K, Todd AC, Rohde CA, Links JM, Schwartz BS (2008) Associations of bone mineral density and lead levels in blood, tibia, and patella in urban-dwelling women. Environ Health Perspect 116:784–790PubMedCrossRefGoogle Scholar
  27. 27.
    Bachner D, Schroder D, Betat N, Ahrens M, Gross G (1999) Apolipoprotein E (ApoE), a Bmp-2 (bone morphogenetic protein) upregulated gene in mesenchymal progenitors (C3H10T1/2), is highly expressed in murine embryonic development. Biofactors 9:11–17PubMedCrossRefGoogle Scholar
  28. 28.
    Hirasawa H, Tanaka S, Sakai A, Tsutsui M, Shimokawa H, Miyata H, Moriwaki S, Niida S, Ito M, Nakamura T (2007) ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells. J Bone Miner Res 22:1020–1030PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson PW, Schaefer EJ, Larson MG, Ordovas JM (1996) Apolipoprotein E alleles and risk of coronary disease. a meta-analysis. Arterioscler Thromb Vasc Biol 16:1250–1255PubMedGoogle Scholar
  30. 30.
    Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tanko LB (2007) Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int 18:505–512PubMedCrossRefGoogle Scholar
  31. 31.
    Szulc P, Samelson EJ, Kiel DP, Delmas PD (2009) Increased bone resorption is associated with increased risk of cardiovascular events in men—the MINOS Study. J Bone Miner Res 24(12):2023–2031PubMedCrossRefGoogle Scholar
  32. 32.
    Parhami F, Garfinkel A, Demer LL (2000) Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol 20:2346–2348PubMedGoogle Scholar
  33. 33.
    Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687PubMedGoogle Scholar
  34. 34.
    Kohlmeier M, Salomon A, Saupe J, Shearer MJ (1996) Transport of vitamin K to bone in humans. J Nutr 126:1192S–1196SPubMedGoogle Scholar
  35. 35.
    Knapen MH, Hamulyak K, Vermeer C (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Intern Med 111:1001–1005PubMedGoogle Scholar
  36. 36.
    Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG (2009) Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206PubMedCrossRefGoogle Scholar
  37. 37.
    Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537PubMedGoogle Scholar
  38. 38.
    Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG (2004) Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 291:2457–2465PubMedCrossRefGoogle Scholar
  39. 39.
    Yerges, L.M., Klei, L., Cauley, J.A., Roeder, K., Kammerer, C.M., Ensrud, K.E., Nestlerode, C.S., Lewis, C., Lang, T.F., Barrett-Connor, E., Moffett, S.P., Hoffman, A.R., Ferrell, R.E., Orwoll, E.S., Zmuda, J.M. (2010) Candidate gene analysis of femoral neck trabecular and cortical volumetric bone mineral density in older men. J Bone Miner Res 25:330–338Google Scholar
  40. 40.
    Yerges LM, Klei L, Cauley JA, Roeder K, Kammerer CM, Moffett SP, Ensrud KE, Nestlerode CS, Marshall LM, Hoffman AR, Lewis C, Lang TF, Barrett-Connor E, Ferrell RE, Orwoll ES, Zmuda JM (2009) A high-density association study of 383 candidate genes for volumetric bone density at the femoral neck and lumbar spine among older men. J Bone Miner Res 24:2039–2049PubMedCrossRefGoogle Scholar
  41. 41.
    Eastell R (2003) Pathogenesis of postmenopausal osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, pp 314–316Google Scholar
  42. 42.
    Rochira V, Balestrieri A, Madeo B, Zirilli L, Granata AR, Carani C (2006) Osteoporosis and male age-related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocrinol 154:175–185PubMedCrossRefGoogle Scholar
  43. 43.
    Kohlmeier M, Saupe J, Schaefer K, Asmus G (1998) Bone fracture history and prospective bone fracture risk of hemodialysis patients are related to apolipoprotein E genotype. Calcif Tissue Int 62:278–281PubMedCrossRefGoogle Scholar
  44. 44.
    Weisgraber KH, Mahley RW (1996) Human apolipoprotein E: the Alzheimer’s disease connection. FASEB J 10:1485–1494PubMedGoogle Scholar
  45. 45.
    Contois JH, Anamani DE, Tsongalis GJ (1996) The underlying molecular mechanism of apolipoprotein E polymorphism: relationships to lipid disorders, cardiovascular disease, and Alzheimer’s disease. Clin Lab Med 16:105–123PubMedGoogle Scholar
  46. 46.
    Bersano A, Ballabio E, Bresolin N, Candelise L (2008) Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat 29:776–795PubMedCrossRefGoogle Scholar
  47. 47.
    Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE, van der Klift M, Pols HA (2004) Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 164:146–152PubMedCrossRefGoogle Scholar
  48. 48.
    Greenow K, Pearce NJ, Ramji DP (2005) The key role of apolipoprotein E in atherosclerosis. J Mol Med 83:329–342PubMedCrossRefGoogle Scholar
  49. 49.
    Langdahl BL, Uitterlinden AG, Ralston SH, Trikalinos TA, Balcells S, Brandi ML, Scollen S, Lips P, Lorenc R, Obermayer-Pietsch B, Reid DM, Armas JB, Arp PP, Bassiti A, Bustamante M, Husted LB, Carey AH, Perez Cano R, Dobnig H, Dunning AM, Fahrleitner-Pammer A, Falchetti A, Karczmarewicz E, Kruk M, van Leeuwen JP, Masi L, van Meurs JB, Mangion J, McGuigan FE, Mellibovsky L, Mosekilde L, Nogues X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Ioannidis JP (2008) Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone 42:969–981PubMedCrossRefGoogle Scholar
  50. 50.
    van Meurs JB, Trikalinos TA, Ralston SH, Balcells S, Brandi ML, Brixen K, Kiel DP, Langdahl BL, Lips P, Ljunggren O, Lorenc R, Obermayer-Pietsch B, Ohlsson C, Pettersson U, Reid DM, Rousseau F, Scollen S, Van Hul W, Agueda L, Akesson K, Benevolenskaya LI, Ferrari SL, Hallmans G, Hofman A, Husted LB, Kruk M, Kaptoge S, Karasik D, Karlsson MK, Lorentzon M, Masi L, McGuigan FE, Mellstrom D, Mosekilde L, Nogues X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Weber K, Ioannidis JP, Uitterlinden AG (2008) Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299:1277–1290PubMedCrossRefGoogle Scholar
  51. 51.
    Heikkinen AM, Kroger H, Niskanen L, Komulainen MH, Ryynanen M, Parviainen MT, Tuppurainen MT, Honkanen R, Saarikoski S (2000) Does apolipoprotein E genotype relate to BMD and bone markers in postmenopausal women? Maturitas 34:33–41PubMedCrossRefGoogle Scholar
  52. 52.
    Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, Wilson PW, Ordovas J, Schaefer EJ, Dawson-Hughes B, Kiel DP (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71:1201–1208PubMedGoogle Scholar
  53. 53.
    Cauley JA, Zmuda JM, Yaffe K, Kuller LH, Ferrell RE, Wisniewski SR, Cummings SR (1999) Apolipoprotein E polymorphism: a new genetic marker of hip fracture risk—the study of osteoporotic fractures. J Bone Miner Res 14:1175–1181PubMedCrossRefGoogle Scholar
  54. 54.
    Dick IM, Devine A, Marangou A, Dhaliwal SS, Laws S, Martins RN, Prince RL (2002) Apolipoprotein E4 is associated with reduced calcaneal quantitative ultrasound measurements and bone mineral density in elderly women. Bone 31:497–502PubMedCrossRefGoogle Scholar
  55. 55.
    Gerdes LU, Vestergaard P, Hermann AP, Mosekilde L (2001) Regional and hormone-dependent effects of apolipoprotein E genotype on changes in bone mineral in perimenopausal women. J Bone Miner Res 16:1906–1916PubMedCrossRefGoogle Scholar
  56. 56.
    Salamone LM, Cauley JA, Zmuda J, Pasagian-Macaulay A, Epstein RS, Ferrell RE, Black DM, Kuller LH (2000) Apolipoprotein E gene polymorphism and bone loss: estrogen status modifies the influence of apolipoprotein E on bone loss. J Bone Miner Res 15:308–314PubMedCrossRefGoogle Scholar
  57. 57.
    Zajickova K, Zofkova I, Hill M, Horinek A, Novakova A (2003) Apolipoprotein E 4 allele is associated with low bone density in postmenopausal women. J Endocrinol Invest 26:312–315PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • I. Peter
    • 1
    Email author
  • M. D. Crosier
    • 2
  • M. Yoshida
    • 3
  • S. L. Booth
    • 3
  • L. A. Cupples
    • 4
    • 5
  • B. Dawson-Hughes
    • 3
  • D. Karasik
    • 6
  • D. P. Kiel
    • 6
  • J. M. Ordovas
    • 3
  • T. A. Trikalinos
    • 7
  1. 1.Department of Genetics and Genomic SciencesMount Sinai School of MedicineNew YorkUSA
  2. 2.Framingham State CollegeFraminghamUSA
  3. 3.Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA
  4. 4.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  5. 5.Framingham Heart StudyFraminghamUSA
  6. 6.Institute for Aging Research, Hebrew SeniorLifeHarvard Medical SchoolBostonUSA
  7. 7.Institute for Clinical Research and Health Policy StudiesTufts Medical CenterBostonUSA

Personalised recommendations