Osteoporosis International

, Volume 22, Issue 2, pp 703–709

Study of the mechanisms by which Sambucus williamsii HANCE extract exert protective effects against ovariectomy-induced osteoporosis in vivo

  • Y. Zhang
  • Q. Li
  • H.-Y. Wan
  • H.-H. Xiao
  • W.-P. Lai
  • X.-S. Yao
  • M.-S. Wong
Original Article
  • 335 Downloads

Abstract

Summary

The purpose of this study is to investigate the dose-dependent effects of SWH on bone properties and the mechanism involved in mediating the osteoprotective actions of SWH. The results indicated that SWH could improve bone properties by inhibiting the process of bone resorption and stimulating the process of bone formation.

Introduction

Our previous study showed that Sambucus williamsii HANCE (SWH) improved trabecular bone mass and cortical bone strength in ovariectomized (OVX) rats. The purpose of this study is to investigate the dose-dependent effects of SWH on bone properties and the mechanism involved in mediating the osteoprotective actions of SWH.

Methods

Three-month-old C57BL/6J mice were fed a phytoestrogen-free diet and subjected to either ovariectomy or sham operation. OVX mice were treated with genistein (50 mg/kg), or a low (200 mg/kg), medium (500 mg/kg), or high (1,000 mg/kg) dose of SWH extract.

Results

SWH could dose-dependently decrease urinary Ca excretion and increase serum Ca level in OVX mice. It could increase tibial bone mineral density and exert beneficial effects on the microarchitecture of trabecular bone in the OVX mice. SWH suppressed the ovariectomy-induced expression of Cbfa1 mRNA and cathepsin K mRNA and enhanced the ratio of OPG/RANKL mRNA expression in the tibia. In vitro study showed that SWH dramatically reduced the number of TRAP-positive cells in RANKL-induced RAW 264.7 cells.

Conclusions

The present study indicated that SWH could improve bone properties by inhibiting the process of bone resorption and stimulating the process of bone formation.

Keywords

Bone gene expression Bone properties Osteoporosis Phytoestrogen Sambucus williamsii HANCE 

References

  1. 1.
    Cooper C, Westlake S, Harvey N et al (2006) Review: developmental origins of osteoporotic fracture. Osteoporos Int 17:337–347CrossRefPubMedGoogle Scholar
  2. 2.
    Fonseca D, Ward WE (2004) Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone 35:489–497CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang Y, Chen WF, Lai WP et al (2008) Soy isoflavones and their bone protective effects. Inflammopharmacology 16:213–215CrossRefPubMedGoogle Scholar
  4. 4.
    Huot L, Couris CM, Tainturier V et al (2008) Trends in HRT and anti-osteoporosis medication prescribing in a European population after the WHI study. Osteoporos Int 19:1047–1054CrossRefPubMedGoogle Scholar
  5. 5.
    Palacios S (2008) Advances in hormone replacement therapy: making the menopause manageable. BMC Womens Health 8:22CrossRefPubMedGoogle Scholar
  6. 6.
    Ahmadiani A, Fereidoni M, Semnanian S, Kamalinejad M, Saremi S (1998) Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J Ethnopharmacol 61:229–235CrossRefPubMedGoogle Scholar
  7. 7.
    Roxas M, Jurenka J (2007) Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev 12:25–48PubMedGoogle Scholar
  8. 8.
    Ebrahimzadeh MA, Mahmoudi M, Karami M, Saeedi S, Ahmadi AH, Salimi E (2007) Separation of active and toxic portions in Sambucus ebulus. Pak J Biol Sci 10:4171–4173CrossRefPubMedGoogle Scholar
  9. 9.
    Ebrahimzadeh MA, Mahmoudi M, Salimi E (2006) Antiinflammatory activity of Sambucus ebulus hexane extracts. Fitoterapia 77:146–148CrossRefPubMedGoogle Scholar
  10. 10.
    Ebrahimzadeh MA, Nabavi SF, Nabavi SM (2009) Antioxidant activities of methanol extract of Sambucus ebulus L. flower. Pak J Biol Sci 12:447–450CrossRefPubMedGoogle Scholar
  11. 11.
    Wright CI, Van-Buren L, Kroner CI, Koning MM (2007) Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol 114:1–31CrossRefPubMedGoogle Scholar
  12. 12.
    Li H, Li J, Prasain JK et al (1998) Antiosteoporotic activity of the stems of Sambucus sieboldiana. Biol Pharm Bull 21:594–598PubMedGoogle Scholar
  13. 13.
    Liu W, Wu CF, Guo YY, Yu QH (1991) Anti-inflammatory activity of aqueous extract of the root of Sambucus williamsii. Fitoterapia 62:83–85Google Scholar
  14. 14.
    Chinese Materia Medica of State Administration of Traditional Chinese Medicine (2000) Chinese Bencao. Shanghai Science and Technology Press, Shanghai, pp 545–547Google Scholar
  15. 15.
    Xie F, Wu CF, Zhang Y et al (2005) Increase in bone mass and bone strength by Sambucus williamsii HANCE in ovariectomized rats. Biol Pharm Bull 28:1879–1885CrossRefPubMedGoogle Scholar
  16. 16.
    Yang XJ, Wong MS, Wang NL, Chan SC, Yao XS (2007) Lignans from the stems of Sambucus williamsii and their effects on osteoblastic UMR106 cells. J Asian Nat Prod Res 9:583–591CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y, Lai WP, Leung PC, Wu CF, Wong MS (2007) Short- to mid-term effects of ovariectomy on bone turnover, bone mass and bone strength in rats. Biol Pharm Bull 30:898–903CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Lai WP, Leung PC, Che CT, Wong MS (2008) Improvement of Ca balance by Fructus Ligustri Lucidi extract in aged female rats. Osteoporos Int 19:235–242CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Li Q, Wan HY, Helferich WG, Wong MS (2009) Genistein and a soy extract differentially affect three-dimensional bone parameters and bone-specific gene expression in ovariectomized mice. J Nutr 139:2230–2236CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Y, Dong XL, Leung PC et al (2009) Differential mRNA expression profiles in proximal tibia of aged rats in response to ovariectomy and low-Ca diet. Bone 44:46–52CrossRefPubMedGoogle Scholar
  21. 21.
    Hie M, Shimono M, Fujii K et al (2007) Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 41:1045–1050CrossRefPubMedGoogle Scholar
  22. 22.
    Pennypacker B, Shea M, Liu Q et al (2009) Bone density, strength, and formation in adult cathepsin K (−/−) mice. Bone 44:199–207CrossRefPubMedGoogle Scholar
  23. 23.
    Marini H, Minutoli L, Polito F et al (2008) OPG and sRANKL serum concentrations in osteopenic, postmenopausal women after 2-year genistein administration. J Bone Miner Res 23:715–720CrossRefPubMedGoogle Scholar
  24. 24.
    Crisafulli A, Altavilla D, Squadrito G et al (2004) Effects of the phytoestrogen genistein on the circulating soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin system in early postmenopausal women. J Clin Endocrinol Metab 89:188–192CrossRefPubMedGoogle Scholar
  25. 25.
    Albertazzi P, Steel SA, Bottazzi M (2005) Effect of pure genistein on bone markers and hot flushes. Climacteric 8:371–379CrossRefPubMedGoogle Scholar
  26. 26.
    Fujisaki K, Tanabe N, Suzuki N (2007) Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci 80:1311–1318CrossRefPubMedGoogle Scholar
  27. 27.
    Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41:218–223CrossRefPubMedGoogle Scholar
  28. 28.
    Ouyang F, Liu Y, Xiao H et al (2009) Lignans from stems of Sambucus williamsii. Zhongguo Zhong Yao Za Zhi 34:1225–1227PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • Y. Zhang
    • 1
  • Q. Li
    • 2
  • H.-Y. Wan
    • 3
  • H.-H. Xiao
    • 4
  • W.-P. Lai
    • 3
  • X.-S. Yao
    • 4
    • 5
  • M.-S. Wong
    • 2
    • 3
  1. 1.Center of System Biomedical SciencesUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Chinese Medicine and Molecular PharmacologyShenzhenPeople’s Republic of China
  3. 3.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonPeople’s Republic of China
  4. 4.School of Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  5. 5.Institute of Traditional Chinese Medicine & Natural Products, College of PharmacyJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations