Osteoporosis International

, Volume 22, Issue 2, pp 453–461 | Cite as

A FRAX® model for the assessment of fracture probability in Belgium

  • H. Johansson
  • J. A. Kanis
  • E. V. McCloskey
  • A. Odén
  • J.-P. Devogelaer
  • J.-M. Kaufman
  • A. Neuprez
  • M. Hiligsmann
  • O. Bruyere
  • J.-Y. Reginster
Original Article

Abstract

Summary

A country-specific FRAX® model was developed from the epidemiology of fracture and death in Belgium. Fracture probabilities were identified that corresponded to currently accepted reimbursement thresholds.

Introduction

The objective of this study was to evaluate a Belgian version of the WHO fracture risk assessment (FRAX®) tool to compute 10-year probabilities of osteoporotic fracture in men and women. A particular aim was to determine fracture probabilities that corresponded to the reimbursement policy for the management of osteoporosis in Belgium and the clinical scenarios that gave equivalent fracture probabilities.

Methods

Fracture probabilities were computed from published data on the fracture and death hazards in Belgium. Probabilities took account of age, sex, the presence of clinical risk factors and femoral neck bone mineral density (BMD). Fracture probabilities were determined that were equivalent to intervention (reimbursement) thresholds currently used in Belgium.

Results

Fracture probability increased with age, lower BMI, decreasing BMD T-score and all clinical risk factors used alone or combined. The 10-year probabilities of a major osteoporosis-related fracture that corresponded to current reimbursement guidelines ranged from approximately 7.5% at the age of 50 years to 26% at the age of 80 years where a prior fragility fracture was used as an intervention threshold. For women at the threshold of osteoporosis (femoral neck T-score = −2.5 SD), the respective probabilities ranged from 7.4% to 15%. Several combinations of risk-factor profiles were identified that gave similar or higher fracture probabilities than those currently accepted for reimbursement in Belgium.

Conclusions

The FRAX® tool has been used to identify possible thresholds for therapeutic intervention in Belgium, based on equivalence of risk with current guidelines. The FRAX® model supports a shift from the current DXA-based intervention strategy, towards a strategy based on fracture probability of a major osteoporotic fracture that in turn may improve identification of patients at increased fracture risk. The approach will need to be supported by health economic analyses.

Keywords

10-year fracture probability Clinical risk factors FRAX® Hip fracture Osteoporotic fracture 

References

  1. 1.
    Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  2. 2.
    Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489PubMedCrossRefGoogle Scholar
  3. 3.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475PubMedCrossRefGoogle Scholar
  4. 4.
    Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D, On behalf of the European Foundation for Osteoporosis and Bone Disease (1977) Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 7:390–406CrossRefGoogle Scholar
  5. 5.
    Kanis on behalf of the World Health Organization Scientific Group. JA (2008) Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaborating Centre, University of Sheffield, UK.Google Scholar
  6. 6.
    European Community. Report on osteoporosis in the European Community. 1998. EC, StrasbourgGoogle Scholar
  7. 7.
    Royal College of Physicians (1999) Osteoporosis: clinical guidelines for the prevention and treatment. Royal College of Physicians, LondonGoogle Scholar
  8. 8.
    Kanis JA, Johnell O, Oden A et al (2000) Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590PubMedCrossRefGoogle Scholar
  9. 9.
    Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis JA, Johnell O, Oden A et al (2000) Risk of hip fracture derived from relative risks: an analysis applied to the population of Sweden. Osteoporos Int 11:120–127PubMedCrossRefGoogle Scholar
  11. 11.
    Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046PubMedCrossRefGoogle Scholar
  12. 12.
    Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCrossRefGoogle Scholar
  13. 13.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Oglesby A (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244PubMedCrossRefGoogle Scholar
  14. 14.
    Dawson-Hughes B, Tosteson AN, Melton LJ 3rd et al (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 19:449–458PubMedCrossRefGoogle Scholar
  15. 15.
    Fujiwara S, Nakamura T, Orimo H et al (2008) Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX). Osteoporos Int 19:429–435PubMedCrossRefGoogle Scholar
  16. 16.
    Lippuner K, Johansson H, Rizzoli R, Kanis JA (2009) Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporosis Int 20:1131–1140Google Scholar
  17. 17.
    Hiligsmann M, Bruyère O, Ethgen O, Gathon HJ, Reginster JY (2008) Lifetime absolute risk of hip and other osteoporotic fracture in Belgian women. Bone 43:991–994PubMedCrossRefGoogle Scholar
  18. 18.
    United Nations population division (2003). World population prospects: the 2002 revision and world urban prospects. Population Division of the Dept Economic and Social Affairs of the UN Secretariat.Google Scholar
  19. 19.
    Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427PubMedCrossRefGoogle Scholar
  20. 20.
    Boonen S, Kaufman JM, Reginster JY, Devogelaer JP, on behalf of the Belgian Bone Club (BBC) (2003) Patient assessment using standardized bone mineral density values and a national reference database: implementing uniform thresholds for the reimbursement of osteoporosis treatments in Belgium. Osteoporos Int 14:110–115PubMedGoogle Scholar
  21. 21.
    Goemaere S, Vanderschueren D, Kaufman JM, On behalf of the Belgian Bone Club (BBC), the Network on Male Osteoporosis in Europe (NEMO) et al (2007) Dual energy x-ray absorptiometry-based assessment of male patients using standardized bone density values and a national reference database. J Clin Densitom 10:25–33PubMedCrossRefGoogle Scholar
  22. 22.
    De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  23. 23.
    Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E (2009) FRAX® and its applications to clinical practice. Bone 44:734–743PubMedCrossRefGoogle Scholar
  24. 24.
    Johansson H, Kanis JA, Oden A, Johnell O, McCloskey E (2009) BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int 20:1675–1682PubMedCrossRefGoogle Scholar
  25. 25.
    Black DM, Steinbuch M, Palermo L et al (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12:519–528PubMedCrossRefGoogle Scholar
  26. 26.
    Burger H, de Laet CE, Weel AE, Hofman A, Pols HA (1999) Added value of bone mineral density in hip fracture risk scores. Bone 25:369–374PubMedCrossRefGoogle Scholar
  27. 27.
    Albrand G, Munoz F, Sornay-Rendu E, DuBoeuf F, Delmas PD (2001) Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: the OFELY Study. Bone 32:78–85CrossRefGoogle Scholar
  28. 28.
    Carroll J, Testa MA, Erat K, LeBoff MS, El-Hajj Fuleihan G (1997) Modelling fracture risk using bone density, age, and years since menopause. Amer J Prevent Med 13:447–452Google Scholar
  29. 29.
    Dargent-Molina P, Douchin MN, Cormier C, Meunier PJ, Bréart G, EPIDOS Study Group (2002) Use of clinical risk factors in elderly women with low bone mineral density to identify women at higher risk of hip fracture: the EPIDOS prospective study. Osteoporos Int 13:593–599PubMedCrossRefGoogle Scholar
  30. 30.
    Girman CJ, Chandler JM, Zimmerman SI et al (2002) Prediction of fracture in nursing home residents. J Amer Geriatr Soc 50:1341–1347CrossRefGoogle Scholar
  31. 31.
    Honkanen RJ, Honkanen K, Kröger H, Alhava E, Tuppurainen M, Saarikoski S (2000) Risk factors for perimenopausal distal forearm fracture. Osteoporos Int 11:265–270PubMedCrossRefGoogle Scholar
  32. 32.
    Leslie WD, Metge C, Salamon EA, Yuen CK (2002) Bone mineral density testing in healthy postmenopausal women: the role of clinical risk factor assessment in determining fracture risk. J Clin Densitom 5:117–130, Erratum in: J Clin Densitom 2002;5:319PubMedCrossRefGoogle Scholar
  33. 33.
    Miller PD, Barlas S, Brenneman S et al (2004) An approach to identifying osteopenic women at increased short-term risk of fracture. Arch Int Med 164:1113–1120CrossRefGoogle Scholar
  34. 34.
    Westfall G, Littlefield R, Heaton A, Martin S (2001) Methodology for identifying patients at high risk for osteoporotic fracture. Clin Ther 23:1570–1588PubMedCrossRefGoogle Scholar
  35. 35.
    Colón-Emeric CS, Pieper CF, Artz MB (2002) Can historical and functional risk factors be used to predict fractures in community-dwelling older adults? Development and validation of a clinical tool. Osteoporos Int 13:955–961PubMedCrossRefGoogle Scholar
  36. 36.
    van Staa T-P, Leufkens H-GM, Cooper C (2002) Utility of medical and drug history in fracture risk prediction among men and women. Bone 31:508–514PubMedCrossRefGoogle Scholar
  37. 37.
    van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C (2005) A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. Quart J Med 98:191–198Google Scholar
  38. 38.
    McGrother CW, Donaldson MM, Clayton D, Abrams KR, Clarke M (2002) Evaluation of a hip fracture risk score for assessing elderly women: the Melton Osteoporotic Fracture (MOF) study. Osteoporos Int 13:89–96PubMedCrossRefGoogle Scholar
  39. 39.
    Walter LC, Lui LY, Eng C, Covinsky KE (2003) Risk of hip fracture in disabled community-living older adults. J Amer Geriatr Soc 51:50–55CrossRefGoogle Scholar
  40. 40.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444PubMedCrossRefGoogle Scholar
  41. 41.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey EV (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCrossRefGoogle Scholar
  42. 42.
    Kanis JA, Oden A, Johansson H, Borgström F, Ström O (2009) McCloskey E (2009)FRAX® and its applications to clinical practice. Bone 44:734–743PubMedCrossRefGoogle Scholar
  43. 43.
    Committee for Medicinal Products for Human Use (CHMP) (2006) Guideline on the evaluation of Medicinal products in the treatment of primary osteoporosis. Ref CPMP/EWP/552/95Rev.2. London, CHMP. Nov 2006.Google Scholar
  44. 44.
    Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-induced Osteoporosis Intervention Study Group. New Engl J Med 339:292–299PubMedCrossRefGoogle Scholar
  45. 45.
    Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E et al (2001) Two year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomised, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211PubMedCrossRefGoogle Scholar
  46. 46.
    Reginster JY, Minne HW, Sorensen OH et al (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral efficacy with risedronate therapy (VERT) study group. Osteoporos Int 11:83–91PubMedCrossRefGoogle Scholar
  47. 47.
    Roussow JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288:321–333CrossRefGoogle Scholar
  48. 48.
    McCloskey EV, Beneton M, Charlesworth D, Kayan K, deTakats D, Dey A et al (2007) Clodronate reduces the incidence of fractures in community dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res 22:135–141PubMedCrossRefGoogle Scholar
  49. 49.
    Chapuy MC, Arlot ME, Delmas PD, Meunier PJ (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308:1081–1082PubMedGoogle Scholar
  50. 50.
    Kanis JA, Barton I, Johnell O (2005) Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int 16:475–482PubMedCrossRefGoogle Scholar
  51. 51.
    McCloskey EV, Selby P, Davies M et al (2004) Clodronate reduces vertebral fracture risk in women with post-menopausal or secondary osteoporosis: results of a double blind placebo-controlled 3 year study. J Bone Miner Res 19:728–736PubMedCrossRefGoogle Scholar
  52. 52.
    Roux C, Reginster J-Y, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z et al (2006) Vertebral fracture with reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542PubMedCrossRefGoogle Scholar
  53. 53.
    Marcus R, Wang O, Satterwhite J et al (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18:18–23PubMedCrossRefGoogle Scholar
  54. 54.
    Johnell O, Kanis JA, Black DM et al (2004) Association between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) study. J Bone Miner Res 19:764–772PubMedCrossRefGoogle Scholar
  55. 55.
    Johansson H, Oden A, Johnell O, Jonsson B, De Laet C, Oglesby A et al (2004) Optimisation of BMD measurements to identify high risk groups for treatment—a test analysis. J Bone Miner Res 19:906–913PubMedCrossRefGoogle Scholar
  56. 56.
    McCloskey EV, Johansson H, Oden A, Vasireddy S, Kayan K, Pande K, Jalava T, Kanis JA (2009) Ten-year fracture probability identifies women who will benefit from clodronate therapy—additional results from a double blind, placebo controlled randomised study. Osteoporos Int 20:811–818PubMedCrossRefGoogle Scholar
  57. 57.
    Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX®. Bone 44:49–54Google Scholar
  58. 58.
    Johansson H, Kanis JA, Borgström F, Ström O, Svensson O, Mellström D (2009) FRAX® ett stöd för frakturprevention. Lakar TidningenGoogle Scholar
  59. 59.
    Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A, and the National Osteoporosis Guideline Group (2008) Case finding for the management of osteoporosis with FRAX®—assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408, Erratum published 2009 Osteoporos Int 20, 499–502PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • H. Johansson
    • 1
  • J. A. Kanis
    • 1
  • E. V. McCloskey
    • 1
  • A. Odén
    • 1
  • J.-P. Devogelaer
    • 2
  • J.-M. Kaufman
    • 3
  • A. Neuprez
    • 4
  • M. Hiligsmann
    • 4
  • O. Bruyere
    • 4
  • J.-Y. Reginster
    • 4
  1. 1.WHO Collaborating Centre for Metabolic Bone DiseasesUniversity of Sheffield Medical SchoolSheffieldUK
  2. 2.Department of RheumatologyUniversité catholique de LouvainBrusselsBelgium
  3. 3.Department of Endocrinology, Unit for Bone DiseasesUniversity of GhentGhentBelgium
  4. 4.Department of Public Health, Epidemiology and Health EconomicsUniversity of LiègeLiègeBelgium

Personalised recommendations