Osteoporosis International

, Volume 21, Issue 12, pp 2037–2046 | Cite as

Detection of vertebral fractures in DXA VFA images using statistical models of appearance and a semi-automatic segmentation

  • M. G. Roberts
  • E. M. B. Pacheco
  • R. Mohankumar
  • T. F. Cootes
  • J. E. Adams
Original Article



Morphometric methods of vertebral fracture diagnosis lack specificity. We used detailed shape and image texture model parameters to improve the specificity of quantitative fracture identification. Two radiologists visually classified all vertebrae for system training and evaluation. The vertebral endplates were located by a semi-automatic segmentation method to obtain classifier inputs.


Vertebral fractures are common osteoporotic fractures, but current quantitative detection methods (morphometry) lack specificity. We used detailed shape and texture information to develop more specific quantitative classifiers of vertebral fracture to improve the objectivity of vertebral fracture diagnosis. These classifiers require a detailed segmentation of the vertebral endplate, and so we investigated the use of semi-automated segmentation methods as part of the diagnosis.


The vertebrae in a training set of 360 dual energy X-ray absorptiometry images were manually segmented. The shape and image texture of vertebrae were statistically modelled using Appearance Models. The vertebrae were given a gold standard classification by two radiologists. Linear discriminant classifiers to detect fractures were trained on the vertebral appearance model parameters. Classifier performance was evaluated by cross-validation for manual and semi-automatic segmentations, the latter derived using Active Appearance Models (AAM). Results were compared with a morphometric algorithm using the signs test.


With manual segmentation, the false positive rates (FPR) at 95% sensitivity were: 5% (appearance) and 18% (morphometry). With semi-automatic segmentations the sensitivities at 5% FPR were: 88% (appearance) and 79% (morphometry).


Specificity and sensitivity are improved by using an appearance-based classifier compared to standard height ratio morphometry. An overall sensitivity loss of 7% occurs (at 95% specificity) when using a semi-automatic (AAM) segmentation compared to expert annotation, due to segmentation error. However, the classifier sensitivity is still adequate for a computer-assisted diagnosis system for vertebral fracture, especially if used in a triage approach.


Active appearance model Computer-assisted diagnosis DXA Osteoporosis Vertebral fracture assessment 



The authors wish to thank Mr Stephen Capener (SC) who performed the manual annotation of the vertebrae on the clinical VFA images, and the team at the University of Sheffield (Professor R. Eastell, Dr. L. Ferrar and Dr. G. Jiang) for initial guidance on the ABQ method. The work was funded through a grant from the UK Arthritis Research Council (ARC) (grant no. 17644), with earlier foundation work having been funded by grants from the Central Manchester University Hospitals NHS Foundation Trust (CMFC) Research Endowment Fund.

Conflicts of interest



  1. 1.
    Cooper C, O’Neill T, Silman A (1993) The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group. Bone 14(Suppl 1):S89–S97CrossRefPubMedGoogle Scholar
  2. 2.
    Melton LJ III, Atkinson EJ, Cooper C et al (1999) Vertebral fractures predict subsequent fractures. Osteoporosis Int 10(3):214–221CrossRefGoogle Scholar
  3. 3.
    Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures; Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14(5):821–828CrossRefPubMedGoogle Scholar
  4. 4.
    Ensrud KE, Nevitt MC, Palermo L et al (1999) What proportion of incident morphometric vertebral fractures are clinically diagnosed and vice versa? J Bone Miner Res 14(S1):S138Google Scholar
  5. 5.
    Gehlbach SH, Bigelow C, Heimisdottir M et al (2000) Recognition of vertebral fractures in a clinical setting. Osteoporos Int 11(7):577–582CrossRefPubMedGoogle Scholar
  6. 6.
    Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20(4):557–563CrossRefPubMedGoogle Scholar
  7. 7.
    Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16(7):717–728CrossRefPubMedGoogle Scholar
  8. 8.
    Guermazi A, Mohr A, Grigorian M et al (2002) Identification of vertebral fractures in osteoporosis. Semin Musculoskelet Radiol 6(3):241–252CrossRefPubMedGoogle Scholar
  9. 9.
    Genant HK, Wu CY, van Kuijk C et al (1993) Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res 8(9):1137–1148CrossRefPubMedGoogle Scholar
  10. 10.
    Black DM, Cummings SR, Stone K et al (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6(8):883–892CrossRefPubMedGoogle Scholar
  11. 11.
    Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6(3):207–215CrossRefPubMedGoogle Scholar
  12. 12.
    McCloskey E, Spector T, Eyres K et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3(3):138–147CrossRefPubMedGoogle Scholar
  13. 13.
    Guglielmi G, Diacinti D, van Kuijk C et al (2008) Vertebral morphometry: current methods and recent advances. Eur Radiol 18(7):1484–1496CrossRefPubMedGoogle Scholar
  14. 14.
    Wu CY, Li J, Jergas M et al (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5(5):354–370CrossRefPubMedGoogle Scholar
  15. 15.
    Black D, Palermo L, Nevitt MC et al (1995) Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 10(6):890–902CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15(11):887–896CrossRefPubMedGoogle Scholar
  17. 17.
    Rea JA, Steiger P, Blake GM et al (1998) Optimizing data acquisition and analysis of morphometric X-ray absorptiometry. Osteoporos Int 8(2):177–183CrossRefPubMedGoogle Scholar
  18. 18.
    Rea JA, Li J, Blake GM et al (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11(8):660–668CrossRefPubMedGoogle Scholar
  19. 19.
    Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Burkhardt H, Neumann B (eds) Proc. 5th European conference on computer vision. Springer, Heidelberg, pp 484–498Google Scholar
  20. 20.
    Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Transactions on Pattern Matching and Machine Intelligence 23(6):681–885CrossRefGoogle Scholar
  21. 21.
    Roberts MG, Cootes TF, Pacheco E, Adams JE (2007) Quantitative vertebral fracture detection on DXA images using shape and appearance models. Acad Radiol 14(10):1166–1178CrossRefPubMedGoogle Scholar
  22. 22.
    Roberts MG, Cootes TF, Adams JE (2006) Vertebral morphometry: semiautomatic determination of detailed shape from dual-energy X-ray absorptiometry images using active appearance models. Invest Radiol 41(12):849–859CrossRefPubMedGoogle Scholar
  23. 23.
    Blake GM, Rea JA, Fogelman I (1997) Vertebral morphometry studies using dual-energy X-ray absorptiometry. Semin Nucl Med 27(3):276–290CrossRefPubMedGoogle Scholar
  24. 24.
    Ferrar L, Jiang G, Eastell R, Peel NF (2003) Visual identification of vertebral fractures in osteoporosis: using morphometric x-ray absorptiometry. J Bone Miner Res 18(5):933–938CrossRefPubMedGoogle Scholar
  25. 25.
    Binkley N, Krueger D, Gangnon R et al (2005) Lateral vertebral assessment: a valuable technique to detect clinically significant vertebral fractures. Osteoporos Int 16(12):1513–1518CrossRefPubMedGoogle Scholar
  26. 26.
    McCloskey E, Selby P, de Takats D et al (2001) Effects of clodronate on vertebral fracture risk in osteoporosis: a 1-year interim analysis. Bone 28(3):310–315CrossRefPubMedGoogle Scholar
  27. 27.
    Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211(2):571–578PubMedGoogle Scholar
  28. 28.
    Vokes T, Bachman D, Baim S et al (2006) (2006) Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom 9(1):37–46CrossRefPubMedGoogle Scholar
  29. 29.
    Ferrar L, Jiang G, Armbrecht G et al (2007) Is short vertebral height always an osteoporotic fracture? The osteoporosis and ultrasound study (OPUS). Bone 41:5–12CrossRefPubMedGoogle Scholar
  30. 30.
    Ferrar L, Jiang G, Clowes GA et al (2008) Comparison of densitometric and radiographic vertebral fracture assessment using the algorithm-based qualitative (ABQ) method in postmenopausal women at low and high risk of fracture. J Bone Miner Res 23(1):103–111CrossRefPubMedGoogle Scholar
  31. 31.
    Scott IM, Cootes TF, Taylor CJ (2003) Improving active appearance model matching using local image structure. In: Proceedings of 18th Conference on Information Processing in Medical Imaging 258–269Google Scholar
  32. 32.
    Rea J, Steiger P, Blake GM et al (1998) Morphometric X-ray absorptiometry: reference data for vertebral dimensions. J Bone Miner Res 13(3):464–474CrossRefPubMedGoogle Scholar
  33. 33.
    Roberts MG (2008). Automatic detection and classification of vertebral fracture using statistical models of appearance, PhD Thesis, University of ManchesterGoogle Scholar
  34. 34.
    Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382CrossRefGoogle Scholar
  35. 35.
    de Bruijne M, Lund M, Tanko L et al (2007) Quantitative vertebral morphometry using neighbour-conditional shape models. Med Image Anal 11(5):503–512CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2010

Authors and Affiliations

  • M. G. Roberts
    • 1
  • E. M. B. Pacheco
    • 1
    • 2
  • R. Mohankumar
    • 1
  • T. F. Cootes
    • 1
  • J. E. Adams
    • 3
  1. 1.Imaging Science and Biomedical EngineeringUniversity of ManchesterManchesterUK
  2. 2.Department of Radiology, Faculty of Medical SciencesState University of Campinas (Unicamp)CampinasBrazil
  3. 3.Clinical RadiologyManchester Royal InfirmaryManchesterUK

Personalised recommendations