Advertisement

Osteoporosis International

, Volume 21, Issue 8, pp 1331–1339 | Cite as

Gonadal sex steroid status and bone health in middle-aged and elderly European men

  • D. VanderschuerenEmail author
  • S. R. Pye
  • K. Venken
  • H. Borghs
  • J. Gaytant
  • I. T. Huhtaniemi
  • J. E. Adams
  • K. A. Ward
  • G. Bartfai
  • F. F. Casanueva
  • J. D. Finn
  • G. Forti
  • A. Giwercman
  • T. S. Han
  • K. Kula
  • F. Labrie
  • M. E. J. Lean
  • N. Pendleton
  • M. Punab
  • A. J. Silman
  • F. C. W. Wu
  • T. W. O’Neill
  • S. Boonen
  • The EMAS Study Group
Original Article

Abstract

Summary

The influence of sex steroids on calcaneal quantitative ultrasound (QUS) parameters was assessed in a population sample of middle-aged and elderly European men. Higher free and total E2 though not testosterone, were independently associated with higher QUS parameters.

Introduction

The aim of this study was to investigate the association between QUS parameters and sex steroids in middle-aged and elderly European men.

Methods

Three thousand one hundred forty-one men aged between 40 and 79 years were recruited from eight European centres for participation in a study of male ageing: the European Male Ageing Study. Subjects were invited by letter to attend for an interviewer-administered questionnaire, blood sample and QUS of the calcaneus (Hologic-SAHARA). Blood was assessed for sex steroids including oestradiol (E2), testosterone (T), free and bio-available E2 and T and sex hormone binding globulin (SHBG).

Results

Serum total T was not associated with any of the QUS parameters. Free T and both free and total E2 were positively related to all QUS readings, while SHBG concentrations were negatively associated. These relationships were observed in both older and younger (<60 years) men. In a multivariate model, after adjustment for age, centre, height, weight, physical activity levels and smoking, free E2 and SHBG, though not free T, remained independently associated with the QUS parameters. After further adjustment for IGF-1, however, the association with SHBG became non-significant.

Conclusion

Higher free and total E2 are associated with bone health not only among the elderly but also middle-aged European men.

Keywords

Epidemiology Oestradiol Sex steroids SHBG Testosterone Ultrasound 

Notes

Acknowledgements

The European Male Ageing Study is funded by the Commission of the European Communities Fifth Framework Programme “Quality of Life and Management of Living Resources” Grant QLK6-CT-2001-00258 and supported by funding from the UK Arthritis Research Campaign. For additional information regarding EMAS, contact Frederick Wu, MD; Dept of Endocrinology, Manchester Royal Infirmary, UK. The authors wish to thank the men who participated in the eight countries, the research/nursing staff in the eight centres: C Pott, Manchester, E Wouters, Leuven, M Nilsson, Malmö, M del Mar Fernandez, Santiago de Compostela, M Jedrzejowska, Lodz, H-M Tabo, Tartu, A Heredi, Szeged for their data collection and C Moseley, Manchester for data entry and project coordination. Dr. Vanderschueren and Dr. Boonen are senior clinical investigators of the Fund for Scientific Research-Flanders, Belgium (F.W.O.-Vlaanderen). Dr. Boonen is holder of the Leuven University Chair in Metabolic Bone Diseases. K Venken is a postdoctoral fellow of the Fund for Scientific Research-Flanders (F.W.O.-Vlaanderen).

Conflicts of interest

None.

References

  1. 1.
    Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ III (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330CrossRefPubMedGoogle Scholar
  2. 2.
    Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882CrossRefPubMedGoogle Scholar
  3. 3.
    Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMedGoogle Scholar
  4. 4.
    Khosla S, Melton LJ III, Riggs BL (2002) Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 87:1443–1450CrossRefPubMedGoogle Scholar
  5. 5.
    Falahati-Nini A, Riggs BL, Atkinson EJ, O'Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560CrossRefPubMedGoogle Scholar
  6. 6.
    Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS (2003) Differential effects of androgens and estrogens on bone turnover in normal men. J Clin Endocrinol Metab 88:204–210CrossRefPubMedGoogle Scholar
  7. 7.
    Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425CrossRefPubMedGoogle Scholar
  8. 8.
    Leder B (2007) Gonadal steroids and bone metabolism in men. Curr Opin Endocrinol Diabetes Obes 14:241–246PubMedGoogle Scholar
  9. 9.
    Mellstrom D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Oden A, Johansson H, Orwoll ES, Labrie F, Karlsson MK, Ljunggren O, Ohlsson C (2008) Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 23:1552–1560CrossRefPubMedGoogle Scholar
  10. 10.
    Meier C, Nguyen TV, Handelsman DJ, Schindler C, Kushnir MM, Rockwood AL, Meikle AW, Center JR, Eisman JA, Seibel MJ (2008) Endogenous sex hormones and incident fracture risk in older men: the Dubbo Osteoporosis Epidemiology Study. Arch Intern Med 168:47–54CrossRefPubMedGoogle Scholar
  11. 11.
    Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J Clin Endocrinol Metab 89:3261–3269CrossRefPubMedGoogle Scholar
  12. 12.
    Meier C, Liu PY, Handelsman DJ, Seibel MJ (2005) Endocrine regulation of bone turnover in men. Clin Endocrinol (Oxf) 263:603–616CrossRefGoogle Scholar
  13. 13.
    Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876CrossRefPubMedGoogle Scholar
  14. 14.
    Leifke E, Gorenoi V, Wichers C, Von Zur MA, Von Buren E, Brabant G (2000) Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol (Oxf) 53:689–695CrossRefGoogle Scholar
  15. 15.
    Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87:589–598CrossRefPubMedGoogle Scholar
  16. 16.
    Lee DM, O'Neill TW, Pye SR, Silman AJ, Finn JD, Pendleton N, Tajar A, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D, Wu FC (2009) The European Male Ageing Study (EMAS): design, methods and recruitment. Int J Androl 32:11–24CrossRefPubMedGoogle Scholar
  17. 17.
    Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162CrossRefPubMedGoogle Scholar
  18. 18.
    Labrie F, Bélanger A, Bélanger P, Bérubé R, Martel C, Cusan L, Gomez J, Candas B, Castiel I, Chaussade V, Deloche C, Leclaire J (2006) Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J Steroid Biochem Mol Biol 99:182–188CrossRefPubMedGoogle Scholar
  19. 19.
    Labrie F, Bélanger A, Bélanger P, Bérubé R, Martel C, Cusan L, Gomez J, Candas B, Chaussade V, Castiel I, Deloche C, Leclaire J (2007) Metabolism of DHEA in postmenopausal women following percutaneous administration. J Steroid Biochem Mol Biol 103:178–188CrossRefPubMedGoogle Scholar
  20. 20.
    Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O'Neill TW, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D, European Male Aging Study Group (2008) Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors. J Clin Endocrinol Metab 93:2737–2745CrossRefPubMedGoogle Scholar
  21. 21.
    Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672CrossRefPubMedGoogle Scholar
  22. 22.
    Van Pottelbergh I, Goemaere S, Kaufman JM (2003) Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 88:3075–3081CrossRefPubMedGoogle Scholar
  23. 23.
    Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRefPubMedGoogle Scholar
  24. 24.
    Nieschlag E, Swerdloff R, Behre HM, Gooren LJ, Kaufman JM, Legros JJ, Lunenfeld B, Morley JE, Schulman C, Wang C, Weidner W, Wu FC (2005) Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. Int J Androl 28:125–127CrossRefPubMedGoogle Scholar
  25. 25.
    Cleveland WS (1979) Weighter regression and smoothing scatterplots. JASA 74:829–836Google Scholar
  26. 26.
    Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2006) Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 91:1995–2010CrossRefPubMedGoogle Scholar
  27. 27.
    Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, Orwoll ES (2006) Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 91:3908–3915CrossRefPubMedGoogle Scholar
  28. 28.
    Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, Lucani B, Dal Canto N, Valenti R, Gennari C, Nuti R (2003) Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 88:5327–5333CrossRefPubMedGoogle Scholar
  29. 29.
    Kuchuk NO, van Schoor NM, Pluijm SM, Smit JH, de Ronde W, Lips P (2007) The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol (Oxf) 67:295–303CrossRefGoogle Scholar
  30. 30.
    Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC (1997) Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 100:1755–1759CrossRefPubMedGoogle Scholar
  31. 31.
    Khosla S, Melton LJ III, Atkinson EJ, O'Fallon WM (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561CrossRefPubMedGoogle Scholar
  32. 32.
    Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Piaseu N, Chailurkit L (1998) Serum estradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol (Oxf) 49:803–809CrossRefGoogle Scholar
  33. 33.
    Center JR, Nguyen TV, Sambrook PN, Eisman JA (1999) Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 84:3626–3635CrossRefPubMedGoogle Scholar
  34. 34.
    Gennari L, Nuti R, Bilezikian JP (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89:5898–5907CrossRefPubMedGoogle Scholar
  35. 35.
    Bjornerem A, Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V, Wilsgaard T, Oian P, Seeman E, Straume B (2007) Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromso study. Calcif Tissue Int 81:65–72CrossRefPubMedGoogle Scholar
  36. 36.
    Lormeau C, Soudan B, d'Herbomez M, Pigny P, Duquesnoy B, Cortet B (2004) Sex hormone-binding globulin, estradiol, and bone turnover markers in male osteoporosis. Bone 34:933–939CrossRefPubMedGoogle Scholar
  37. 37.
    Legrand E, Hedde C, Gallois Y, Degasne I, Boux de Casson F, Mathieu E, Basle MF, Chappard D, Audran M (2001) Osteoporosis in men: a potential role for the sex hormone binding globulin. Bone 29:90–95CrossRefPubMedGoogle Scholar
  38. 38.
    Lee JS, Lacroix AZ, Wu L, Cauley JA, Jackson RD, Kooperberg C, Leboff MS, Robbins J, Lewis CE, Bauer DC, Cummings SR (2008) Associations of serum sex hormone-binding globulin and sex hormone concentrations with hip fracture risk in postmenopausal women. J Clin Endocrinol Metab 93:1796–1803CrossRefPubMedGoogle Scholar
  39. 39.
    Khosla S, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, Riggs BL (2005) Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J Bone Miner Res 20:730–740CrossRefPubMedGoogle Scholar
  40. 40.
    Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18:771–777CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • D. Vanderschueren
    • 1
    Email author
  • S. R. Pye
    • 2
  • K. Venken
    • 1
  • H. Borghs
    • 3
  • J. Gaytant
    • 1
  • I. T. Huhtaniemi
    • 4
  • J. E. Adams
    • 5
  • K. A. Ward
    • 5
    • 6
  • G. Bartfai
    • 7
  • F. F. Casanueva
    • 8
  • J. D. Finn
    • 2
  • G. Forti
    • 9
  • A. Giwercman
    • 10
  • T. S. Han
    • 11
  • K. Kula
    • 12
  • F. Labrie
    • 13
  • M. E. J. Lean
    • 11
  • N. Pendleton
    • 14
  • M. Punab
    • 15
  • A. J. Silman
    • 2
  • F. C. W. Wu
    • 16
  • T. W. O’Neill
    • 2
  • S. Boonen
    • 3
  • The EMAS Study Group
  1. 1.Department of Andrology and EndocrinologyKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.ARC Epidemiology UnitThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
  3. 3.Leuven University Division of Geriatric Medicine and Centre for Metabolic Bone DiseasesKatholieke Universiteit LeuvenLeuvenBelgium
  4. 4.Department of Reproductive BiologyImperial College LondonLondonUK
  5. 5.Clinical Radiology, Imaging Science and Biomedical EngineeringThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
  6. 6.MRC Human Nutrition ResearchCambridgeUK
  7. 7.Department of Obstetrics, Gynaecology and AndrologyAlbert Szent-Gyorgy Medical UniversitySzegedHungary
  8. 8.Department of MedicineSantiago de Compostela UniversitySantiago de CompostelaSpain
  9. 9.Andrology Unit, Department of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly
  10. 10.Scanian Andrology Centre, Department of UrologyMalmö University Hospital, University of LundMalmöSweden
  11. 11.Department of EndocrinologyRoyal Free and University College Hospital Medical School, Royal Free HospitalHampsteadLondon
  12. 12.Department of Andrology and Reproductive EndocrinologyMedical University of LodzLodzPoland
  13. 13.Laboratory of Molecular Endocrinology and Oncology, Le Centre hospitalier de l’Universite LavalLaval UniversityQuebecCanada
  14. 14.Clinical GerontologyThe University of Manchester, Manchester Academic Health Science Centre, Hope HospitalSalfordUK
  15. 15.Andrology UnitUnited Laboratories of Tartu University ClinicsTartuEstonia
  16. 16.Department of EndocrinologyThe University of Manchester, Manchester Academic Health Science Centre, Manchester Royal InfirmaryManchesterUK

Personalised recommendations