Osteoporosis International

, Volume 21, Issue 9, pp 1513–1522 | Cite as

Prevalent vertebral deformity independently increases incident vertebral fracture risk in middle-aged and elderly Japanese women: The Japanese Population-based Osteoporosis (JPOS) Cohort Study

  • E. Kadowaki
  • J. Tamaki
  • M. Iki
  • Y. Sato
  • Y. Chiba
  • E. Kajita
  • S. Kagamimori
  • Y. Kagawa
  • H. Yoneshima
Original Article



Prevalent vertebral deformity increases incident vertebral fracture risk according to studies focusing primarily on Caucasian elderly populations. We report a 3-fold increase in this risk in a population-based cohort of Japanese women after adjusting for subject propensity for having vertebral deformities. This relationship tended to be stronger in middle-aged women.


Evidence on increased risk of incident vertebral fractures associated with vertebral deformity in middle-aged women is limited. We aimed to evaluate this risk in a population-based cohort of Japanese women.


We followed 712 women aged 50–79 years at baseline randomly selected from 3 municipalities in Japan for 6 years. McCloskey–Kanis criteria identified vertebral deformities on X-ray absorptiometric images. At follow-up, vertebra with ≥20% height reduction from baseline were considered incident fractures. Rate ratio (RR) of incident fracture for prevalent vertebral deformities was calculated using the Poisson regression equation adjusted for propensity of having vertebral deformities based on potential risk factors.


Vertebral fractures occurred in 73 women (10.3%). Crude RR of vertebral deformity-associated fracture was 4.63 [95% confidence interval (CI), 3.04–7.04] and decreased to 2.96 (95% CI, 1.77–4.94) after propensity score adjustment. Adjusted RR was generally greater in younger women at 7.19 (95% CI, 1.04–49.6), 3.19 (95% CI, 1.27–7.97), and 2.34 (95% CI, 1.33–4.11) for women aged 50–59, 60–69, and 70–79 years, respectively (p = 0.0527 for those aged 50–59 vs 70–79).


Vertebral deformity was associated with a 3-fold increase in subsequent vertebral fracture risk in Japanese women, and this association was stronger in middle-aged women.


Incident vertebral fracture Japanese women Middle-aged women Population-based cohort study Prevalent vertebral deformity Propensity score 


  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  2. 2.
    Pluijm SM, Tromp AM, Smit JH, Deeg DJ, Lips P (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572CrossRefPubMedGoogle Scholar
  3. 3.
    Oleksik A, Lips P, Dawson A, Minshall ME, Shen W, Cooper C, Kanis J (2000) Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res 15:1384–1392CrossRefPubMedGoogle Scholar
  4. 4.
    Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O, European Vertebral Osteoporosis Study (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14:61–68CrossRefPubMedGoogle Scholar
  5. 5.
    Nevitt MC, Cummings SR, Stone KL, Palermo L, Black DM, Bauer DC, Genant HK, Hochberg MC, Ensrud KE, Hillier TA, Cauley JA (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or=65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140PubMedGoogle Scholar
  6. 6.
    Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923PubMedGoogle Scholar
  7. 7.
    Papaioannou A, Joseph L, Ioannidis G, Berger C, Anastassiades T, Brown JP, Hanley DA, Hopman W, Josse RG, Kirkland S, Murray TM, Olszynski WP, Pickard L, Prior JC, Siminoski K, Adachi JD (2005) Risk factors associated with incident clinical vertebral and nonvertebral fractures in postmenopausal women: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 16:568–578CrossRefPubMedGoogle Scholar
  8. 8.
    Johnell O, O'Neill T, Felsenberg D, Kanis J, Cooper C, Silman AJ (1997) Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group. Am J Epidemiol 146:287–293PubMedGoogle Scholar
  9. 9.
    Lufkin EG, Wahner HW, O'Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, Judd HL, Caplan RH, Riggs BL (1992) Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med 117:1–9PubMedGoogle Scholar
  10. 10.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739CrossRefPubMedGoogle Scholar
  11. 11.
    Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18:1617–1624CrossRefPubMedGoogle Scholar
  12. 12.
    Pongchaiyakul C, Nguyen ND, Jones G, Center JR, Eisman JA, Nguyen TV (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20:1349–1355CrossRefPubMedGoogle Scholar
  13. 13.
    Ross PD, Fujiwara S, Huang C, Davis JW, Epstein RS, Wasnich RD, Kodama K, Melton LJ 3rd (1995) Vertebral fracture prevalence in women in Hiroshima compared to Caucasians or Japanese in the US. Int J Epidemiol 24:1171–1177CrossRefPubMedGoogle Scholar
  14. 14.
    van der Klift M, De Laet CE, McCloskey EV, Hofman A, Pols HA (2002) The incidence of vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 17:1051–1056CrossRefPubMedGoogle Scholar
  15. 15.
    Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553CrossRefPubMedGoogle Scholar
  16. 16.
    Iki M, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS) Study. Osteoporos Int 12:529–537CrossRefPubMedGoogle Scholar
  17. 17.
    Iki M, Morita A, Ikeda Y, Sato Y, Akiba T, Matsumoto T, Nishino H, Kagamimori S, Kagawa Y, Yoneshima H, JPOS Study Group (2006) Biochemical markers of bone turnover predict bone loss in perimenopausal women but not in postmenopausal women—the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 17:1086–1095CrossRefPubMedGoogle Scholar
  18. 18.
    Iki M, Akiba T, Matsumoto T, Nishino H, Kagamimori S, Kagawa Y, Yoneshima H (2004) Reference database of biochemical markers of bone turnover for the Japanese female population. Japanese Population-based Osteoporosis (JPOS) Study. Osteoporos Int 15:981–991CrossRefPubMedGoogle Scholar
  19. 19.
    McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147CrossRefPubMedGoogle Scholar
  20. 20.
    Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK (2003) Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 12(Suppl 2):S104–S112CrossRefPubMedGoogle Scholar
  21. 21.
    Nathan H (1962) Osteophytes of the vertebral column. J Bone Jnt Surg 44-A:243–269Google Scholar
  22. 22.
    Sato Y, Tamaki J, Kitayama F, Kusaka Y, Kodera Y, Koutani A, Iki M (2005) Development of a food-frequency questionnaire to measure the dietary calcium intake of adult Japanese women. Tohoku J Exp Med 207:217–222CrossRefPubMedGoogle Scholar
  23. 23.
    SAS Institute Inc (2008) SAS/STAT user’s guide. SAS Institute Inc, CaryGoogle Scholar
  24. 24.
    Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55CrossRefGoogle Scholar
  25. 25.
    Rothman KJ, Greenland S, Lash T (2008) Modern Epidemiology, 3rd edn. Lippincott, PhiladelphiaGoogle Scholar
  26. 26.
    Robins JM, Hernán MA, Brumback B (2000) Marginal structural models and causal inference in epidemiology. Epidemiology 11:550–560CrossRefPubMedGoogle Scholar
  27. 27.
    SPSS Inc. (2004) SPSS Regression Models 13.0. SPSS Inc., ChicagoGoogle Scholar
  28. 28.
    van der Klift M, de Laet CE, McCloskey EV, Johnell O, Kanis JA, Hofman A, Pols HA (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 19:1172–1180CrossRefPubMedGoogle Scholar
  29. 29.
    Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767CrossRefPubMedGoogle Scholar
  30. 30.
    Finigan J, Greenfield DM, Blumsohn A, Hannon RA, Peel NF, Jiang G, Eastell R (2008) Risk factors for vertebral and nonvertebral fracture over 10 years: a population-based study in women. J Bone Miner Res 23:75–85CrossRefPubMedGoogle Scholar
  31. 31.
    Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532CrossRefPubMedGoogle Scholar
  32. 32.
    Lunt M, O'Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ, European Prospective Osteoporosis Study Group (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 33:505–513CrossRefPubMedGoogle Scholar
  33. 33.
    Naves M, Díaz-López JB, Gómez C, Rodríguez-Rebollar A, Rodríguez-García M, Cannata-Andía JB (2003) The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos Int 14:520–524CrossRefPubMedGoogle Scholar
  34. 34.
    Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323CrossRefPubMedGoogle Scholar
  35. 35.
    Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE (1999) Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. The Fracture Intervention Trial Research Group. Bone 25:613–619CrossRefPubMedGoogle Scholar
  36. 36.
    Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828CrossRefPubMedGoogle Scholar
  37. 37.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382CrossRefPubMedGoogle Scholar
  38. 38.
    Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379CrossRefPubMedGoogle Scholar
  39. 39.
    Cepeda MS, Boston R, Farrar JT, Strom BL (2003) Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 158:280–287CrossRefPubMedGoogle Scholar
  40. 40.
    Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574CrossRefPubMedGoogle Scholar
  41. 41.
    Ferrar L, Jiang G, Clowes JA, Peel NF, Eastell R (2008) Comparison of densitometric and radiographic vertebral fracture assessment using the algorithm-based qualitative (ABQ) method in postmenopausal women at low and high risk of fracture. J Bone Miner Res 23:103–111CrossRefPubMedGoogle Scholar
  42. 42.
    Schousboe JT, Vokes T, Broy SB, Ferrar L, McKiernan F, Roux C, Binkley N (2008) Vertebral fracture assessment: the 2007 ISCD official positions. J Clin Densitom 11:92–108CrossRefPubMedGoogle Scholar
  43. 43.
    Fukunaga M, Nakamura T, Shiraki M, Kuroda T, Ohta H, Hosoi T, Orimo H (2004) Absolute height reduction and percent height ratio of the vertebral body in incident fracture in Japanese women. J Bone Miner Metab 22:104–110CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • E. Kadowaki
    • 1
  • J. Tamaki
    • 1
  • M. Iki
    • 1
  • Y. Sato
    • 2
  • Y. Chiba
    • 3
  • E. Kajita
    • 4
  • S. Kagamimori
    • 5
  • Y. Kagawa
    • 6
  • H. Yoneshima
    • 7
  1. 1.Department of Public HealthKinki University School of MedicineOsaka-SayamaJapan
  2. 2.Department of Human LifeJin-ai UniversityEchizenJapan
  3. 3.Department of Environmental Medicine and Behavioral ScienceKinki University School of MedicineOsaka-SayamaJapan
  4. 4.Department of Public Health and Home NursingNagoya University School of Health SciencesNagoyaJapan
  5. 5.University of ToyamaToyamaJapan
  6. 6.Kagawa Nutrition UniversityTokyoJapan
  7. 7.Shuuwa General HospitalKasukabeJapan

Personalised recommendations