Osteoporosis International

, Volume 21, Issue 8, pp 1437–1447 | Cite as

Suppressive effects of 1,4-dihydroxy-2-naphthoic acid administration on bone resorption

  • M. Matsubara
  • E. Yamachika
  • H. Tsujigiwa
  • N. Mizukawa
  • T. Ueno
  • J. Murakami
  • N. Ishida
  • Y. Kaneda
  • N. Shirasu
  • S. Takagi
Original Article

Abstract

Summary

The main component of the metabolic by-products of fermentation by Propionibacterium freudenreichii ET-3 is 1,4-dihydroxy-2-naphthoic acid (DHNA), which has a naphthoquinone skeleton, as in vitamin K2. This study showed that DHNA improved bone mass reduction with osteoporosis model mice caused by FK506.

Introduction

Growth of the intestinal bacterium Lactobacillus bifidus is specifically facilitated by DHNA. The present study used osteoporosis model mice to investigate the effects of DHNA on bone remodeling.

Methods

FK506, an immunosuppressant, was used to prepare osteoporosis model mice. Thirty mice were divided into three groups: FK group, FK+DHNA group, and control group. In the FK group, FK506 was administered to induce bone mass reduction. In the FK-DHNA group, FK506 and DHNA were administered concurrently to observe improvements in bone mass reduction. To ascertain systemic and local effects of DHNA, we investigated systemic pathological changes in colon, kidney function and cytokine dynamics, and morphological and organic changes in bone and osteoclast dynamics as assessed by culture experiments.

Results

Compared to the FK group without DHNA, colon damage and kidney dysfunction were milder for FK+DHNA group, and production of inflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) was more suppressed. Furthermore, compared to the group without DHNA, histological analyses and radiography showed that bone resorption was suppressed for the DHNA group. Culture experiments using osteoclasts from murine bone marrow showed osteoclast suppression for the DHNA group compared to the group without DHNA.

Conclusion

These results show that DHNA has some effects for improving bone mass reduction caused by FK506.

Keywords

Bone metabolism Bone resorption DHNA FK506 Osteoporosis Osteoporosis treatment 

Notes

Conflicts of interest

None.

References

  1. 1.
    Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141CrossRefPubMedGoogle Scholar
  2. 2.
    Roodman DG (1996) Advances in bone biology: the osteoclast. Endocrine Rev 17:308–332Google Scholar
  3. 3.
    Rodino MA, Shane E (1998) Osteoporosis after organ transplantation. Am J Med 104:459–469CrossRefPubMedGoogle Scholar
  4. 4.
    Kawaguchi H, Manabe N, Miyaura C et al (1999) Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 104:229–237CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen A, Shane E (2003) Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14:617–630CrossRefPubMedGoogle Scholar
  6. 6.
    Monegal A, Navasa M, Guañabens N et al (2001) Bone disease after liver transplantation: a long-term prospective study of bone mass changes, hormonal status and histomorphometric characteristics. Osteoporos Int 12:484–492CrossRefPubMedGoogle Scholar
  7. 7.
    Kirino S, Fukunaga J, Ikegami S et al (2004) Regulation of bone metabolism in immunosuppressant (FK506)-treated rats. J Bone Miner Res 22:554–560CrossRefGoogle Scholar
  8. 8.
    Fukunaga J, Yamaai T, Yamachika E et al (2004) Expression of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in rat osteoporosis induced by immunosuppressant FK506. Bone 34:425–431CrossRefPubMedGoogle Scholar
  9. 9.
    Pirsch JD, Miller J, Deierhoi MH et al (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. Tranaplantation 63:977–983CrossRefGoogle Scholar
  10. 10.
    Hengming K, Huai Q (2003) Structures of calcineurin and its complexes with immunophilins–immunosuppressants. Biochem Biophys Res Commun 311:1095–1102CrossRefGoogle Scholar
  11. 11.
    Liu J, Farmer JD, Lane WS et al (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66:807–815CrossRefPubMedGoogle Scholar
  12. 12.
    Goto T, Kino T, Hatanaka H et al (1991) FK506: historical perspectives. Transplant Proc 23:2713–2717PubMedGoogle Scholar
  13. 13.
    Fruman DA, Klee CB, Bierer BE et al (1992) Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporine A. Proc Natl Acad Sci USA 89:3686–3690CrossRefPubMedGoogle Scholar
  14. 14.
    Cohen A, Sambrook P, Shane E (2004) Management of bone loss after organ transplantation. J Bone Miner Res 19:1919–1932CrossRefPubMedGoogle Scholar
  15. 15.
    Shane E, Addesso V, Namerow PB et al (2004) Alendronateversus calcitriol for the prevention of bone loss after cardiac transplantation. N Engl J Med 350:767–776CrossRefPubMedGoogle Scholar
  16. 16.
    Crawford BA, Kam C, Pavlovic J et al (2006) Zoledronic acidprevents bone loss after liver transplantation: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:239–248PubMedGoogle Scholar
  17. 17.
    Atamaz F, Hepguler S, Akyildiz M et al (2006) Effects of alendronate on bone mineral density and bone metabolic markers in patients with liver transplantation. Osteoporos Int 17:942–949CrossRefPubMedGoogle Scholar
  18. 18.
    de Nijs RNJ, Jacobs JWG, Algra A et al (2004) Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporosis Int 15:589–602CrossRefGoogle Scholar
  19. 19.
    Fukunaga M, Kushida K, Kishimoto H et al (2002) A comparison of the effect of risedronate and etidronate on lumbar bone mineral density in Japanese patients with osteoporosis: a randomized controlled trial. Osteoporos Int 13:971–979CrossRefPubMedGoogle Scholar
  20. 20.
    Green JR, Seltenmeyer Y, Jaeggi KA et al (1997) Renal tolerability profile of novel, potent bisphosphonates in two short-term rat models. Pharmacol Toxicol. 80:225–230CrossRefPubMedGoogle Scholar
  21. 21.
    Chang JT, Green L, Beitz J (2003) Renal failure with the use of zoledronic acid. N Engl J Med 349:1676–1679CrossRefPubMedGoogle Scholar
  22. 22.
    Mehrotra B, Ruggiero S (2006) Bisphosphonate complications including osteonecrosis of the jaw. Hematology 2006:356–360CrossRefGoogle Scholar
  23. 23.
    Yarom N, Yahalom R, Shoshani Y et al (2007) Osteonecrosis of the jaw induced by orally administered bisphospnates: incidence, clinical features, predisposing factors and treatment outcome. Osteoporos Int 18:1363–1370CrossRefPubMedGoogle Scholar
  24. 24.
    Bagan J, Blade J, Cozar JM et al (2007) Recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw (ONJ) in cancer patients treated with bisphosphonates. Med Oral Patol Oral Cir Bucal 12:336–340Google Scholar
  25. 25.
    Dempfle CE, Borggrefe M (2005) Vermeidung von Notfallsituationen bei gerinnungshemmender Therapie mit Vitamin-K-Antagonisten. Der Internist 46:1006–1013CrossRefPubMedGoogle Scholar
  26. 26.
    Okada Y, Tsuzuki Y, Miyazaki J, Miura S et al (2006) Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut 55(5):681–688CrossRefPubMedGoogle Scholar
  27. 27.
    Kaneko T, Mori H, Iwata M et al (1993) Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci 77:393–404CrossRefGoogle Scholar
  28. 28.
    Kaneko T (1999) A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii. Bioscience Microflora 18(2):73–80Google Scholar
  29. 29.
    Suzuki A, Mitsuyama K, Koga H et al (2006) Bifidogenic growth stimulator for the treatment of active ulcerative colitis: a pilot study. Nutrion 22(1):76–81CrossRefGoogle Scholar
  30. 30.
    Nanbara A, Nukada R, Nagai S (1983) Inhibition by acetic and propionic acids of the growth of Propionibacterium shermanii. J Ferment Technol 61:551–556Google Scholar
  31. 31.
    Iwasa K, Hojo K, Yoda N et al (2002) Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3. Biosci Biotechnol Biochem 66(3):679–681CrossRefGoogle Scholar
  32. 32.
    Iwamoto J, Takeda T, Sato Y et al (2007) Additive effect of vitamin K2 and risedronate on long bone mass in hypophysectomized young rats. Exp Anim 56(2):103–110CrossRefPubMedGoogle Scholar
  33. 33.
    Kinoshita Y, Taguchi M, Takeshita A et al (2005) 1,25-Dihydroxyvitamin D suppresses circulating levels of parathyroid hormone in a patient with primary hyperparathyroidism and coexistent sarcoidosis. J Clin Endocrinol Metab 90(12):6727–6731CrossRefPubMedGoogle Scholar
  34. 34.
    Gal-Moscovici A, Sprague SM, Lerma EV (2007) Treatment of renal osteodystrophy. Clin Rev Bone Mineral Metab 5:27–38CrossRefGoogle Scholar
  35. 35.
    Mrvos R, Hodgman M, Krenzelok EP (1997) Tacrolimus (FK506) overdose: a report of five cases. J Toxicol Clin Toxicol 35(4):395–399CrossRefPubMedGoogle Scholar
  36. 36.
    Jimi E, Nakamura I, Duong LT et al (1999) Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res 247:84–93CrossRefPubMedGoogle Scholar
  37. 37.
    Akatsu T, Takahashi N, Udagawa N et al (1991) Role of prostaglandins in interleukin-1 bone resorption in mice vitro. J Bone Miner Res 6:183–190CrossRefPubMedGoogle Scholar
  38. 38.
    Kobayashi K, Takahashi N, Jimi E et al (2000) Tumor necrosis factor stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL–RANK interaction. J Exp Med 191(2):275–286CrossRefPubMedGoogle Scholar
  39. 39.
    Azuma Y, Kaji K, Katogi R et al (2000) Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275(7):4858–4864CrossRefPubMedGoogle Scholar
  40. 40.
    Gordon CM, Binello E, LeBoff MS et al (2006) Relationship between insulin-like growth factor I, dehydroepiandrosterone sulfate and proresorptive cytokinesand bone density in cystic fibrosis. Osteoporos Int 17:783–790CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • M. Matsubara
    • 1
  • E. Yamachika
    • 1
  • H. Tsujigiwa
    • 2
  • N. Mizukawa
    • 1
  • T. Ueno
    • 1
  • J. Murakami
    • 3
  • N. Ishida
    • 1
  • Y. Kaneda
    • 1
  • N. Shirasu
    • 1
  • S. Takagi
    • 1
  1. 1.Department of Oral and Maxillofacial Reconstructive SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama CityJapan
  2. 2.Department of VirologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama CityJapan
  3. 3.Department of Oral and Maxillofacial RadiologyOkayama University Graduate Schools of Medicine Dentistry and Pharmaceutical SciencesOkayama CityJapan

Personalised recommendations