Osteoporosis International

, Volume 21, Issue 7, pp 1205–1214 | Cite as

The differences of femoral neck geometric parameters: effects of age, gender and race

Original Article

Abstract

Summary

This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter, cross-sectional area, cortical thickness, sectional modulus, and buckling ratio and found that the three factors would influence the FNGPs.

Introduction

Bone geometry is one of the most important predictors of bone strength and osteoporotic fractures. This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), sectional modulus (Z), and buckling ratio (BR).

Methods

In the studied 861 Caucasian subjects and 3,021 Chinese individuals, CSA, CT, and Z displayed trends of decrease with age, but W and BR showed increasing trends with age in both Chinese and Caucasian females and males (p < 0.05). W, CSA, CT, and Z were significantly higher (p ≤ 0.001) in Caucasians than in Chinese and higher in males than in females except for BR between Chinese males and Chinese females.

Conclusion

In conclusion, the differences of FNGPs according to gender and ethnicity provide important implications in the different prevalence of osteoporotic fracture among different gender and ethnic groups.

Keywords

Age Femoral neck geometric parameters Race Sex 

References

  1. 1.
    Melton LJ III, Atkinson EJ, O'Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233CrossRefPubMedGoogle Scholar
  2. 2.
    De Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593CrossRefPubMedGoogle Scholar
  3. 3.
    Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–1217CrossRefPubMedGoogle Scholar
  4. 4.
    Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int 16(Suppl 1):S11–S15CrossRefPubMedGoogle Scholar
  5. 5.
    Pulkkinen P, Partanen J, Jalovaara P, Jamsa T (2004) Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 15:274–280CrossRefPubMedGoogle Scholar
  6. 6.
    Gnudi S, Sitta E, Fiumi N (2007) Bone density and geometry in assessing hip fracture risk in post-menopausal women. Br J Radiol 80:893–897CrossRefPubMedGoogle Scholar
  7. 7.
    Chin K, Evans MC, Cornish J, Cundy T, Reid IR (1997) Differences in hip axis and femoral neck length in premenopausal women of Polynesian, Asian and European origin. Osteoporos Int 7:344–347CrossRefPubMedGoogle Scholar
  8. 8.
    Cummings SR, Cauley JA, Palermo L, Ross PD, Wasnich RD, Black D, Faulkner KG (1994) Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:226–229CrossRefPubMedGoogle Scholar
  9. 9.
    Wang XF, Duan Y, Beck TJ, Seeman E (2005) Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36:978–986CrossRefPubMedGoogle Scholar
  10. 10.
    Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2275CrossRefPubMedGoogle Scholar
  11. 11.
    Xu L, Lu A, Zhao X, Chen X, Cummings SR (1996) Very low rates of hip fracture in Beijing, People's Republic of China the Beijing Osteoporosis Project. Am J Epidemiol 144:901–907PubMedGoogle Scholar
  12. 12.
    Zhang L, Cheng A, Bai Z, Lu Y, Endo N, Dohmae Y, Takahashi HE (2000) Epidemiology of cervical and trochanteric fractures of the proximal femur in 1994 in Tangshan, China. J Bone Miner Metab 18:84–88CrossRefPubMedGoogle Scholar
  13. 13.
    Yan L, Zhou B, Prentice A, Wang X, Golden MH (1999) Epidemiological study of hip fracture in Shenyang, People's Republic of China. Bone 24:151–155CrossRefPubMedGoogle Scholar
  14. 14.
    Xu H, Long JR, Yang YJ, Deng FY, Deng HW (2006) Genetic determination and correlation of body weight and body mass index (BMI) and cross-sectional geometric parameters of the femoral neck. Osteoporos Int 17:1602–1607CrossRefPubMedGoogle Scholar
  15. 15.
    Ross PD, Norimatsu H, Davis JW, Yano K, Wasnich RD, Fujiwara S, Hosoda Y, Melton LJ III (1991) A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am J Epidemiol 133:801–809PubMedGoogle Scholar
  16. 16.
    Xiong DH, Liu YZ, Liu PY, Zhao LJ, Deng HW (2005) Association analysis of estrogen receptor alpha gene polymorphisms with cross-sectional geometry of the femoral neck in Caucasian nuclear families. Osteoporos Int 16:2113–2122CrossRefPubMedGoogle Scholar
  17. 17.
    Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH, Liu PY, Liu YJ, Recker RR, Deng HW (2007) Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res 22:808–816CrossRefPubMedGoogle Scholar
  18. 18.
    Deng HW, Deng H, Liu YJ, Liu YZ, Xu FH, Shen H, Conway T, Li JL, Huang QY, Davies KM, Recker RR (2002) A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. Am J Hum Genet 70:1138–1151CrossRefPubMedGoogle Scholar
  19. 19.
    Deng HW, Deng XT, Conway T, Xu FH, Heaney R, Recker RR (2002) Determination of bone size of hip, spine, and wrist in human pedigrees by genetic and lifestyle factors. J Clin Densitom 5:45–56CrossRefPubMedGoogle Scholar
  20. 20.
    Recker R, Lappe J, Davies K, Heaney R (2000) Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 15(10):1965–1973CrossRefPubMedGoogle Scholar
  21. 21.
    Deng HW, Chen WM, Conway T, Zhou Y, Davies KM, Stegman MR, Deng H, Recker RR (2000) Determination of bone mineral density of the hip and spine in human pedigrees by genetic and life-style factors. Genet Epidemiol 19(2):160–177CrossRefPubMedGoogle Scholar
  22. 22.
    Filardi S, Zebaze RM, Duan Y, Edmonds J, Beck T, Seeman E (2004) Femoral neck fragility in women has its structural and biomechanical basis established by periosteal modeling during growth and endocortical remodeling during aging. Osteoporos Int 15:103–107CrossRefPubMedGoogle Scholar
  23. 23.
    Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570CrossRefPubMedGoogle Scholar
  24. 24.
    Rivadeneira F, Houwing-Duistermaat JJ, Beck TJ, Janssen JA, Hofman A, Pols HA, Van Duijn CM, Uitterlinden AG (2004) The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly: the Rotterdam Study. J Bone Miner Res 19:1280–1290CrossRefPubMedGoogle Scholar
  25. 25.
    Duan Y, Beck TJ, Wang XF, Seeman E (2003) Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18:1766–1774CrossRefPubMedGoogle Scholar
  26. 26.
    Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304CrossRefPubMedGoogle Scholar
  27. 27.
    Lauderdale DS, Jacobsen SJ, Furner SE, Levy PS, Brody JA, Goldberg J (1997) Hip fracture incidence among elderly Asian-American populations. Am J Epidemiol 146:502–509PubMedGoogle Scholar
  28. 28.
    Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CC Jr (1994) Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 9:1071–1076CrossRefPubMedGoogle Scholar
  29. 29.
    Lekamwasam S, Lenora J (2007) Age-related trends in hip geometry in Sri Lankan women: a cross-sectional study. J Bone Miner Metab 25:431–435CrossRefPubMedGoogle Scholar
  30. 30.
    Yu W, Qin M, Xu L, van Kuijk C, Meng X, Xing X, Cao J, Genant HK (1999) Normal changes in spinal bone mineral density in a Chinese population: assessment by quantitative computed tomography and dual-energy X-ray absorptiometry. Osteoporos Int 9:179–187CrossRefPubMedGoogle Scholar
  31. 31.
    Fujii Y, Tsutsumi M, Tsunenari T, Fukase M, Yoshimoto Y, Fujita T, Genant HK (1989) Quantitative computed tomography of lumbar vertebrae in Japanese patients with osteoporosis. Bone Miner 6:87–94CrossRefPubMedGoogle Scholar
  32. 32.
    Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16:1108–1119CrossRefPubMedGoogle Scholar
  33. 33.
    Yoshimura N, Hashimoto T, Sakata K, Morioka S, Kasamatsu T, Cooper C (1999) Biochemical markers of bone turnover and bone loss at the lumbar spine and femoral neck: the Taiji study. Calcif Tissue Int 65:198–202CrossRefPubMedGoogle Scholar
  34. 34.
    Sone T, Miyake M, Takeda N, Fukunaga M (1995) Urinary excretion of type I collagen crosslinked N-telopeptides in healthy Japanese adults: age- and sex-related changes and reference limits. Bone 17:335–339CrossRefPubMedGoogle Scholar
  35. 35.
    Tsai KS, Pan WH, Hsu SH, Cheng WC, Chen CK, Chieng PU, Yang RS, Twu ST (1996) Sexual differences in bone markers and bone mineral density of normal Chinese. Calcif Tissue Int 59:454–460PubMedGoogle Scholar
  36. 36.
    Center JR, Nguyen TV, Sambrook PN, Eisman JA (1999) Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J Clin Endocrinol Metab 84:3626–3635CrossRefPubMedGoogle Scholar
  37. 37.
    Greendale GA, Edelstein S, Barrett-Connor E (1997) Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res 12:1833–1843CrossRefPubMedGoogle Scholar
  38. 38.
    Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136CrossRefPubMedGoogle Scholar
  39. 39.
    Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141:3956–3964CrossRefPubMedGoogle Scholar
  40. 40.
    Meunier PJ, Chapuy MC, Arlot ME, Delmas PD, Duboeuf F (1994) Can we stop bone loss and prevent hip fractures in the elderly? Osteoporos Int 4(Suppl 1):71–76CrossRefPubMedGoogle Scholar
  41. 41.
    Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 14:1217–1221CrossRefPubMedGoogle Scholar
  42. 42.
    Pacifici R (2007) Estrogen deficiency, T cells and bone loss. Cell Immunol 252(1–2):68–80PubMedGoogle Scholar
  43. 43.
    O'Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018CrossRefPubMedGoogle Scholar
  44. 44.
    Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res 14:1394–1403CrossRefPubMedGoogle Scholar
  45. 45.
    Duan Y, Seeman E (2002) Bone fragility in Asian and Caucasian men. Ann Acad Med Singap 31:54–66PubMedGoogle Scholar
  46. 46.
    Liao EY, Wu XP, Deng XG, Huang G, Zhu XP, Long ZF, Wang WB, Tang WL, Zhang H (2002) Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in chinese women. Osteoporos Int 13:669–676CrossRefPubMedGoogle Scholar
  47. 47.
    Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32:25–38CrossRefPubMedGoogle Scholar
  48. 48.
    Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  1. 1.Laboratory of Molecular and Statistical Genetics, College of Life SciencesHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Center of Systematic Biomedical ResearchShanghai University of Science and TechnologyShanghaiChina
  3. 3.Departments of Orthopedic Surgery and Basic Medical SciencesUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations