Advertisement

Osteoporosis International

, Volume 21, Issue 7, pp 1161–1169 | Cite as

Assessing forearm fracture risk in postmenopausal women

  • L. J. MeltonIII
  • D. Christen
  • B. L. Riggs
  • S. J. Achenbach
  • R. Müller
  • G. H. van Lenthe
  • S. Amin
  • E. J. Atkinson
  • S. Khosla
Original Article

Abstract

Summary

A diverse array of bone density, structure, and strength parameters were significantly associated with distal forearm fractures in postmenopausal women, but most of them were also correlated with femoral neck areal bone mineral density (aBMD), which provides an adequate measure of bone fragility at the wrist for routine clinical purposes.

Introduction

This study seeks to test the clinical utility of approaches for assessing forearm fracture risk.

Methods

Among 100 postmenopausal women with a distal forearm fracture (cases) and 105 with no osteoporotic fracture (controls), we measured aBMD and assessed radius volumetric bone mineral density, geometry, and microstructure; ultradistal radius failure load was evaluated in microfinite element (μFE) models.

Results

Fracture cases had inferior bone density, geometry, microstructure, and strength. The most significant determinant of fracture in five categories were bone density (femoral neck aBMD; odds ratio (OR) per standard deviation (SD), 2.0; 95% confidence interval (CI), 1.4–2.8), geometry (cortical thickness; OR, 1.5; 95% CI, 1.1–2.1), microstructure (structure model index (SMI); OR, 0.5; 95% CI, 0.4–0.7), and strength (µFE failure load; OR, 1.8; 95% CI, 1.3–2.5); the factor-of-risk (applied load in a forward fall ÷ μFE failure load) was 15% worse in cases (OR, 1.9; 95% CI, 1.4–2.6). Areas under receiver operating characteristic curves (AUC) ranged from 0.62 to 0.68. The predictors of forearm fracture risk that entered a multivariable model were femoral neck aBMD and SMI (combined AUC, 0.71).

Conclusions

Detailed bone structure and strength measurements provide insight into forearm fracture pathogenesis, but femoral neck aBMD performs adequately for routine clinical risk assessment.

Keywords

Bone density Bone quality Colles’ fracture Epidemiology Risk assessment 

Notes

Acknowledgments

The authors would like to thank Margaret Holets for the HRpQCT measurements, Lisa McDaniel, R.N. and Louise McCready, R.N., for their assistance in recruiting and managing the study subjects, James M. Peterson for his assistance with data management and file storage, and Mary Roberts for her assistance in preparing the manuscript.

Conflicts of interest

None.

References

  1. 1.
    van Lenthe GH, Müller R (2008) CT-based visualization and quantification of bone microstructure in vivo. IBMS BoneKEy 5:410–425Google Scholar
  2. 2.
    Boutroy S, Bouxsein ML, Munoz F et al (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515CrossRefPubMedGoogle Scholar
  3. 3.
    Melton LJ III, Riggs BL, van Lenthe GH et al (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448CrossRefPubMedGoogle Scholar
  4. 4.
    Sornay-Rendu E, Boutroy S, Munoz F et al (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433CrossRefPubMedGoogle Scholar
  5. 5.
    Arbenz P, van Lenthe GH, Mennel U et al (2008) A scalable multi-level preconditioner for matrix-free micro-finite element analysis of human bone structures. Int J Numer Methods Eng 73:927–947CrossRefGoogle Scholar
  6. 6.
    Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36(Suppl 1):S123–128CrossRefPubMedGoogle Scholar
  7. 7.
    Palvanen M, Kannus P, Parkkari J et al (2000) The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporos Int 11:822–831CrossRefPubMedGoogle Scholar
  8. 8.
    Melton LJ III, Amadio PC, Crowson CS et al (1998) Long-term trends in the incidence of distal forearm fractures. Osteoporos Int 8:341–348CrossRefPubMedGoogle Scholar
  9. 9.
    Riggs BL, Melton LJ III, Robb RA et al (2006) Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 21:315–323CrossRefPubMedGoogle Scholar
  10. 10.
    Kirmani S, Christen D, van Lenthe GH et al (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042CrossRefGoogle Scholar
  11. 11.
    Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337PubMedGoogle Scholar
  12. 12.
    Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefPubMedGoogle Scholar
  13. 13.
    Laib A, Newitt DC, Lu Y et al (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136CrossRefPubMedGoogle Scholar
  14. 14.
    Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-mm-resolution microcomputed tomography. Bone 24:35–39CrossRefPubMedGoogle Scholar
  15. 15.
    MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105CrossRefPubMedGoogle Scholar
  16. 16.
    van Lenthe GH, Müller R (2006) Prediction of failure load using micro-finite element analysis models: toward in vivo strength assessment. Drug Discov Today Tech 3:221–229CrossRefGoogle Scholar
  17. 17.
    Pistoia W, van Rietbergen B, Lochmuller EM et al (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848CrossRefPubMedGoogle Scholar
  18. 18.
    Bouxsein ML (2008) Chapter 23. Biomechanics of age-related fractures. In: Marcus R, Feldman D, Nelson DA, Rosen CJ (eds) Osteoporosis, 3rd edn. Elsevier, Amsterdam, pp 601–623Google Scholar
  19. 19.
    Chiu J, Robinovitch SN (1998) Prediction of upper extremity impact forces during falls on the outstretched hand. J Biomech 31:1169–1176CrossRefPubMedGoogle Scholar
  20. 20.
    Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387CrossRefPubMedGoogle Scholar
  21. 21.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMedGoogle Scholar
  22. 22.
    Raisz LG (2005) Clinical practice. Screening for osteoporosis. N Engl J Med 353:164–171CrossRefPubMedGoogle Scholar
  23. 23.
    Nelson HD, Helfand M, Woolf SH et al (2002) Screening for postmenopausal osteoporosis: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137:529–541PubMedGoogle Scholar
  24. 24.
    Genant HK, Jiang Y (2006) Advanced imaging assessment of bone quality. Ann N Y Acad Sci 1068:410–428CrossRefPubMedGoogle Scholar
  25. 25.
    Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261CrossRefPubMedGoogle Scholar
  26. 26.
    NOF Guide Committee (2008) Clinician’s Guide to Prevention and Treatment of Osteoporosis National Osteoporosis Foundation. http://www.nof.org/professionals/NOF_Clinicians_Guide.pdf, Washington, D.C.
  27. 27.
    Sode M, Burghardt AJ, Nissenson RA et al (2008) Resolution dependence of the non-metric trabecular structure indices. Bone 42:728–736CrossRefPubMedGoogle Scholar
  28. 28.
    Vico L, Zouch M, Amirouche A et al (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23:1741–1750CrossRefPubMedGoogle Scholar
  29. 29.
    Cummings SR, Melton LJ III (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  30. 30.
    Khosla S, Riggs BL, Atkinson EJ et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMedGoogle Scholar
  31. 31.
    Lochmuller EM, Matsuura M, Bauer J et al (2008) Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 23:1964–1973CrossRefPubMedGoogle Scholar
  32. 32.
    Boutroy S, Van Rietbergen B, Sornay-Rendu E et al (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399CrossRefPubMedGoogle Scholar
  33. 33.
    Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352CrossRefPubMedGoogle Scholar
  34. 34.
    Ashe MC, Khan KM, Kontulainen SA et al (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251CrossRefPubMedGoogle Scholar
  35. 35.
    Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4:382–398CrossRefPubMedGoogle Scholar
  36. 36.
    Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184CrossRefPubMedGoogle Scholar
  37. 37.
    Cooper D, Turinsky A, Sensen C et al (2007) Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int 80:211–219CrossRefPubMedGoogle Scholar
  38. 38.
    Wachter NJ, Augat P, Krischak GD et al (2001) Prediction of cortical bone porosity in vitro by microcomputed tomography. Calcif Tissue Int 68:38–42CrossRefPubMedGoogle Scholar
  39. 39.
    Buie HR, Campbell GM, Klinck RJ et al (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515CrossRefPubMedGoogle Scholar
  40. 40.
    Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMedGoogle Scholar
  41. 41.
    Kaptoge S, Benevolenskaya LI, Bhalla AK et al (2005) Low BMD is less predictive than reported falls for future limb fractures in women across Europe: results from the European Prospective Osteoporosis Study. Bone 36:387–398CrossRefPubMedGoogle Scholar
  42. 42.
    MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213CrossRefPubMedGoogle Scholar
  43. 43.
    Kelsey JL, Prill MM, Keegan TH et al (2005) Reducing the risk for distal forearm fracture: preserve bone mass, slow down, and don’t fall! Osteoporos Int 16:681–690CrossRefPubMedGoogle Scholar
  44. 44.
    Melton LJ III, Achenbach SJ, O’Fallon WM et al (2002) Secondary osteoporosis and the risk of distal forearm fractures in men and women. Bone 31:119–125CrossRefPubMedGoogle Scholar
  45. 45.
    Nielsen SP, Xie X, Barenholdt O (2001) Geometric properties of distal radius and pathogenesis of Colles fracture: a peripheral quantitative computed tomography study. J Clin Densitom 4:209–219CrossRefPubMedGoogle Scholar
  46. 46.
    Eckstein F, Kuhn V, Lochmuller EM (2004) Strength prediction of the distal radius by bone densitometry–evaluation using biomechanical tests. Ann Biomed Eng 32:487–503CrossRefPubMedGoogle Scholar
  47. 47.
    Mueller TL, van Lenthe GH, Stauber M et al (2006) Non-destructive prediction of individual bone strength as assessed by high-resolution 3D-pQCT in a population study of the human radius. J Bone Miner Res 21(Supplement 1):S232Google Scholar
  48. 48.
    Weichetova M, Stepan JJ, Haas T et al (2005) The risk of Colles’ fracture is associated with the collagen I alpha1 Sp1 polymorphism and ultrasound transmission velocity in the calcaneus only in heavier postmenopausal women. Calcif Tissue Int 76:98–106CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • L. J. MeltonIII
    • 1
    • 3
  • D. Christen
    • 5
  • B. L. Riggs
    • 3
  • S. J. Achenbach
    • 2
  • R. Müller
    • 5
  • G. H. van Lenthe
    • 5
    • 6
  • S. Amin
    • 1
    • 4
  • E. J. Atkinson
    • 2
  • S. Khosla
    • 3
  1. 1.Division of Epidemiology, Department of Health Sciences ResearchCollege of Medicine, Mayo ClinicRochesterUSA
  2. 2.Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchCollege of Medicine, Mayo ClinicRochesterUSA
  3. 3.Division of Endocrinology, Metabolism and Nutrition, Department of Internal MedicineCollege of Medicine, Mayo ClinicRochesterUSA
  4. 4.Division of Rheumatology, Department of Internal MedicineCollege of Medicine, Mayo ClinicRochesterUSA
  5. 5.Institute for BiomechanicsETH ZurichZurichSwitzerland
  6. 6.Division of Biomechanics and Engineering DesignK.U. LeuvenLeuvenBelgium

Personalised recommendations