Osteoporosis International

, Volume 21, Issue 4, pp 619–625 | Cite as

Femoral bone mineral density reflects histologically determined cortical bone volume in hemodialysis patients

  • T. Adragao
  • J. Herberth
  • M.-C. Monier-Faugere
  • A. J. Branscum
  • A. Ferreira
  • J. M. Frazao
  • H. H. Malluche
Original Article



We evaluated the associations between dual energy X-ray absorptiometry (DXA) and histologically determined cancellous and cortical bone volume by controlling for vascular calcifications and demographic variables in hemodialysis (HD) patients. Femoral bone mineral density (f-BMD) was associated with cortical porosity.


Assessment of bone mass in chronic kidney disease patients is of clinical importance because of the association between low bone volume, fractures, and vascular calcifications. DXA is used for noninvasive assessment of bone mass whereby vertebral results reflect mainly cancellous bone and femoral results reflect mainly cortical bone. Bone histology allows direct measurements of cancellous and cortical bone volume. The present study evaluates the association between DXA and histologically determined cancellous and cortical bone volumes in HD patients.


In 38 HD patients, DXA was performed for assessment of bone mass, anterior iliac crest bone biopsies for bone volume, and multislice computed tomography for vascular calcifications.


While lumbar bone mineral density (l-BMD) by DXA was not associated with histologically measured cancellous bone volume, coronary Agatson score showed a borderline statistically significant association (P = 0.055). When controlled for age and dialysis duration, f-BMD by DXA was associated with cortical porosity determined by histology (P = 0.005).


The usefulness of l-BMD for predicting bone volume is limited most probably because of interference by soft tissue calcifications. In contrast, f-BMD shows significant association with cortical porosity.


Bone biopsy Bone mineral density Bone volume Chronic kidney disease Cortical porosity Vascular calcifications 



The following colleagues have participated in the study: Célia Gil, Carlos Oliveira, José Galvão, António Morais Sarmento, Silvia Ribeiro, Jorge Dickson, Berta Carvalho, Ilídio Rodrigues, Jorge Baldaia, and Odete Pereira. This study was supported by grants National Institutes of Health NIH RO1 DK51530 (H.H.M.), by the Kentucky Nephrology Research Trust (M-C.M-F., H.H.M.), by the Dean’s Clinical Research Scholar Program, University of Kentucky, no 1012112710 (J.H.), and by a grant from Genzyme. The authors would like to thank ISNI, Instituto Nefrológico de Investigação, for the assistance in the organization of this study and Ms. Juliana Van Willigen and Richard Wheaton for their technical assistance.

Conflicts of interest



  1. 1.
    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399CrossRefPubMedGoogle Scholar
  2. 2.
    Jadoul M, Albert JM, Akiba T, Akizawa T, Arab L, Bragg-Gresham JL, Mason N, Prutz KG, Young EW, Pisoni RL (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the dialysis outcomes and practice patterns study. Kidney Int 70:1358–1366CrossRefPubMedGoogle Scholar
  3. 3.
    Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253CrossRefPubMedGoogle Scholar
  4. 4.
    Adragao T, Herberth J, Monier-Faugere MC, Branscum AJ, Ferreira A, Frazao JM, Dias Curto J, Malluche HH (2009) Low bone volume—a risk factor for coronary calcifications in hemodialysis patients. Clin J Am Soc Nephrol 4:450–455CrossRefPubMedGoogle Scholar
  5. 5.
    Coco M, Rush H (2000) Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis 36:1115–1121CrossRefPubMedGoogle Scholar
  6. 6.
    Danese MD, Kim J, Doan QV, Dylan M, Griffiths R, Chertow GM (2006) PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am J Kidney Dis 47:149–156CrossRefPubMedGoogle Scholar
  7. 7.
    Hans DB, Shepherd JA, Schwartz EN, Reid DM, Blake GM, Fordham JN, Fuerst T, Hadji P, Itabashi A, Krieg MA, Lewiecki EM (2008) Peripheral dual-energy X-ray absorptiometry in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:188–206CrossRefPubMedGoogle Scholar
  8. 8.
    Writing Group for the ISCD Position Development Conference (2004) Indications and reporting for dual-energy X-ray absorptiometry. J Clin Densitom 7:37–44CrossRefGoogle Scholar
  9. 9.
    Hangartner TN, Johnston CC (1990) Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner 9:71–81CrossRefPubMedGoogle Scholar
  10. 10.
    Formica C, Loro ML, Gilsanz V, Seeman E (1995) Inhomogeneity in body fat distribution may result in inaccuracy in the measurement of vertebral bone mass. J Bone Miner Res 10:1504–1511CrossRefPubMedGoogle Scholar
  11. 11.
    Wren TA, Kim PS, Janicka A, Sanchez M, Gilsanz V (2007) Timing of peak bone mass: discrepancies between CT and DXA. J Clin Endocrinol Metab 92:938–941CrossRefPubMedGoogle Scholar
  12. 12.
    Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS (2000) Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 58:353–362CrossRefPubMedGoogle Scholar
  13. 13.
    Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32:S112–S119CrossRefPubMedGoogle Scholar
  14. 14.
    Taal MW, Masud T, Green D, Cassidy MJ (1999) Risk factors for reduced bone density in haemodialysis patients. Nephrol Dial Transplant 14:1922–1928CrossRefPubMedGoogle Scholar
  15. 15.
    Jamal SA, Chase C, Goh YI, Richardson R, Hawker GA (2002) Bone density and heel ultrasound testing do not identify patients with dialysis-dependent renal failure who have had fractures. Am J Kidney Dis 39:843–849CrossRefPubMedGoogle Scholar
  16. 16.
    Piraino B, Chen T, Cooperstein L, Segre G, Puschett J (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30:57–62PubMedGoogle Scholar
  17. 17.
    Urena P, Bernard-Poenaru O, Ostertag A, Baudoin C, Cohen-Solal M, Cantor T, de Vernejoul MC (2003) Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol Dial Transplant 18:2325–2331CrossRefPubMedGoogle Scholar
  18. 18.
    Inaba M, Okuno S, Kumeda Y, Yamakawa T, Ishimura E, Nishizawa Y (2005) Increased incidence of vertebral fracture in older female hemodialyzed patients with type 2 diabetes mellitus. Calcif Tissue Int 76:256–260CrossRefPubMedGoogle Scholar
  19. 19.
    Lindergard B, Johnell O, Nilsson BE, Wiklund PE (1985) Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron 39:122–129CrossRefPubMedGoogle Scholar
  20. 20.
    Van Eps CL, Jeffries JK, Anderson JA, Bergin PT, Johnson DW, Campbell SB, Carpenter SM, Isbel NM, Mudge DW, Hawley CM (2007) Mineral metabolism, bone histomorphometry and vascular calcification in alternate night nocturnal haemodialysis. Nephrology (Carlton) 12:224–233CrossRefGoogle Scholar
  21. 21.
    Goldner J (1938) A modification of the Masson trichrome technique for routine laboratory purposes. Am J Pathol 14:237–243PubMedGoogle Scholar
  22. 22.
    Lillie PD, Fullmer HM (1976) Histopathologic technique and practical histochemistry. McGraw Hill, New YorkGoogle Scholar
  23. 23.
    Denton J, Freemont AJ, Ball J (1984) Detection of distribution of aluminum in bone. J Clin Pathol 37:136–142CrossRefPubMedGoogle Scholar
  24. 24.
    Gomori G (1936) Microtechnical demonstration: a criticism of its methods. Am J Pathol 12:655–663PubMedGoogle Scholar
  25. 25.
    Malluche HH, Meyer W, Sherman D, Massry SG (1982) Quantitative bone histology in 84 normal American subjects. Micromorphometric analysis and evaluation of variance in iliac bone. Calcif Tissue Int 34:449–455CrossRefPubMedGoogle Scholar
  26. 26.
    Malluche HH, Faugere MC (1986) Atlas of mineralized bone histology. Karger, New YorkGoogle Scholar
  27. 27.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  28. 28.
    NIH Consensus Development Panel (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  29. 29.
    Miller PD, Bonnick SL, Rosen CJ (1996) Consensus of an international panel on the clinical utility of bone mass measurements in the detection of low bone mass in the adult population. Calcif Tissue Int 58:207–214PubMedGoogle Scholar
  30. 30.
    Lindberg JS, Moe SM (1999) Osteoporosis in end-state renal disease. Semin Nephrol 19:115–122PubMedGoogle Scholar
  31. 31.
    Hruska KA, Teitelbaum SL (1995) Renal osteodystrophy. N Engl J Med 33:166–174CrossRefGoogle Scholar
  32. 32.
    Cunningham J, Sprague SM, Cannata-Andia J, Coco M, Cohen-Solal M, Fitzpatrick L, Goltzmann D, Lafage-Proust MH, Leonard M, Ott S, Rodriguez M, Stehman-Breen C, Stern P, Weisinger J (2004) Osteoporosis in chronic kidney disease. Am J Kidney Dis 43:566–571CrossRefPubMedGoogle Scholar
  33. 33.
    Miller PD (2005) Treatment of osteoporosis in chronic kidney disease and end-stage renal disease. Curr Osteoporos Rep 3:5–12CrossRefPubMedGoogle Scholar
  34. 34.
    Lobao R, Carvalho AB, Cuppari L, Ventura R, Lazaretti-Castro M, Jorgetti V, Vieira JG, Cendoroglo M, Draibe SA (2004) High prevalence of low bone mineral density in pre-dialysis chronic kidney disease patients: bone histomorphometric analysis. Clin Nephrol 62:432–439PubMedGoogle Scholar
  35. 35.
    Dorr LD, Arnala I, Faugere MC, Malluche HH (1990) Five-year postoperative results of cemented femoral arthroplasty in patients with systemic bone disease. Clin Orthop Relat Res 259:114–121PubMedGoogle Scholar
  36. 36.
    Boyce TM, Bloebaum RD (1993) Cortical aging differences and fracture implications for the human femoral neck. Bone 14:769–778CrossRefPubMedGoogle Scholar
  37. 37.
    Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64CrossRefPubMedGoogle Scholar
  38. 38.
    Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRefPubMedGoogle Scholar
  39. 39.
    Ersoy FF, Passadakis SP, Tam P, Memmos ED, Katopodis PK, Ozener C, Akcicek F, Camsari T, Ates K, Ataman R, Vlachojannis JG, Dombros AN, Utas C, Akpolat T, Bozfakioglu S, Wu G, Karayaylali I, Arinsoy T, Stathakis PC, Yavuz M, Tsakiris JD, Dimitriades CA, Yilmaz ME, Gultekin M, Karayalcin B, Yardimsever M, Oreopoulos DG (2006) Bone mineral density and its correlation with clinical and laboratory factors in chronic peritoneal dialysis patients. J Bone Miner Metab 24:79–86CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • T. Adragao
    • 1
  • J. Herberth
    • 2
  • M.-C. Monier-Faugere
    • 2
  • A. J. Branscum
    • 3
  • A. Ferreira
    • 4
  • J. M. Frazao
    • 5
  • H. H. Malluche
    • 2
    • 6
  1. 1.Nephrology DepartmentSanta Cruz HospitalLisbonPortugal
  2. 2.Division of Nephrology, Bone and Mineral MetabolismUniversity of KentuckyLexingtonUSA
  3. 3.Departments of Biostatistics, Statistics, and EpidemiologyUniversity of KentuckyLexingtonUSA
  4. 4.Nephrology DepartmentCurry Cabral HospitalLisbonPortugal
  5. 5.Nephrology Department, Hospital de S. João, Medical School and Nephrology Research and Development UnitUniversity of PortoPortoPortugal
  6. 6.Division of Nephrology, Bone & Mineral MetabolismUK Medical CenterLexingtonUSA

Personalised recommendations