Osteoporosis International

, Volume 21, Issue 4, pp 597–607

Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism

  • G. Armbrecht
  • D. L. Belavý
  • U. Gast
  • M. Bongrazio
  • F. Touby
  • G. Beller
  • H. J. Roth
  • F. H. Perschel
  • J. Rittweger
  • D. Felsenberg
Original Article

Abstract

Summary

During and after prolonged bed rest, changes in bone metabolic markers occur within 3 days. Resistive vibration exercise during bed rest impedes bone loss and restricts increases in bone resorption markers whilst increasing bone formation.

Introduction

To investigate the effectiveness of a resistive vibration exercise (RVE) countermeasure during prolonged bed rest using serum markers of bone metabolism and whole-body dual X-ray absorptiometry (DXA) as endpoints.

Methods

Twenty healthy male subjects underwent 8 weeks of bed rest with 12 months follow-up. Ten subjects performed RVE. Blood drawings and DXA measures were conducted regularly during and after bed rest.

Results

Bone resorption increased in the CTRL group with a less severe increase in the RVE group (p = 0.0004). Bone formation markers increased in the RVE group but decreased marginally in the CTRL group (p < 0.0001). At the end of bed rest, the CTRL group showed significant loss in leg bone mass (−1.8(0.9)%, p = 0.042) whereas the RVE group did not (−0.7(0.8)%, p = 0.405) although the difference between the groups was not significant (p = 0.12).

Conclusions

The results suggest the countermeasure restricts increases in bone resorption, increased bone formation, and reduced bone loss during bed rest.

Keywords

Bone turnover markers DXA Microgravity Re-ambulation Vibration exercise 

References

  1. 1.
    Oganov VS, Grigoriev AI, Voronin LI et al (1992) Bone mineral density in cosmonauts after 4.5–6 month long flights aboard orbital station MIR. Aerospace Environ Med 26:20–24Google Scholar
  2. 2.
    Le Blanc A, Schneider V, Shackelford L et al (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160Google Scholar
  3. 3.
    Le Blanc A, Lin C, Shackelford L et al (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164Google Scholar
  4. 4.
    Rittweger J, Frost HM, Schiessl H et al (2005) Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 36:1019–1029CrossRefPubMedGoogle Scholar
  5. 5.
    Shackelford LC, LeBlanc AD, Driscoll TB et al (2004) Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 97:119–129CrossRefPubMedGoogle Scholar
  6. 6.
    Frost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262:398–419CrossRefPubMedGoogle Scholar
  7. 7.
    Tesch PA, Buchanan P, Dudley GA (1990) An approach to counteracting long-term microgravity-induced muscle atrophy. Physiologist 33:S77–S79PubMedGoogle Scholar
  8. 8.
    Greenleaf JE, Bulbulian R, Bernauer EM et al (1989) Exercise-training protocols for astronauts in microgravity. J Appl Physiol 67:2191–2204PubMedGoogle Scholar
  9. 9.
    Convertino VA (1991) Neuromuscular aspects in development of exercise countermeasures. Physiologist 34:S125–128PubMedGoogle Scholar
  10. 10.
    Cardinale M, Bosco C (2003) The use of vibration as an exercise intervention. Exerc Sport Sci Rev 31:3–7CrossRefPubMedGoogle Scholar
  11. 11.
    Torvinen S, Sievanen H, Jarvinen TAH et al (2002) Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study. Int J Sports Med 23:374–379CrossRefPubMedGoogle Scholar
  12. 12.
    Fontana TL, Richardson CA, Stanton WR (2005) The effect of weight-bearing exercise with low frequency, whole body vibration on lumbosacral proprioception: a pilot study on normal subjects. Aust J Physiother 51:259–263PubMedGoogle Scholar
  13. 13.
    Delecluse C, Roelants M, Verschueren S (2003) Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc 35:1033–1041CrossRefPubMedGoogle Scholar
  14. 14.
    Issurin VB, Liebermann DG, Tenenbaum G (1994) Effect of vibratory stimulation training on maximal force and flexibility. J Sports Sci 12:561–566CrossRefPubMedGoogle Scholar
  15. 15.
    Torvinen S, Kannus P, Sievanen H et al (2002) Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc 34:1523–1528CrossRefPubMedGoogle Scholar
  16. 16.
    Ribot-Ciscar E, Butler JE, Thomas CK (2003) Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury. J Appl Physiol 94:2358–2367PubMedGoogle Scholar
  17. 17.
    Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222CrossRefPubMedGoogle Scholar
  18. 18.
    Kiiski J, Heinonen A, Jarvinen TL et al (2008) Transmission of vertical whole body vibration to the human body. J Bone Miner Res 23:1318–1325CrossRefPubMedGoogle Scholar
  19. 19.
    Rubin C, Pope M, Fritton JC et al (2003) Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of o. Spine 28:2621–2627CrossRefPubMedGoogle Scholar
  20. 20.
    Le Blanc A, Schneider V, Spector E et al (1995) Calcium absorption, endogenous secretion and endocrine changes during and after long-term bed rest. Bone 16:301S–304SCrossRefGoogle Scholar
  21. 21.
    Le Blanc AD, Driscol TB, Shackelford LC et al (2002) Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskel Neuron Interact 2:335–343Google Scholar
  22. 22.
    Miyamoto A, Shigematsu T, Fukunaga T et al (1998) Medical baseline data collection on bone and muscle change with space flight. Bone 22:79S–82SCrossRefPubMedGoogle Scholar
  23. 23.
    Smith SM, Davis-Street JE, Fesperman JV et al (2003) Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: a bed rest study with identical twins. J Bone Miner Res 18:2223–2230CrossRefPubMedGoogle Scholar
  24. 24.
    Smith SM, Wastney ME, O’Brien KO et al (2005) Bone markers, calcium metabolism, and calcium kinetics during extended duration space flight on the Mir space station. J Bone Miner Res 20:208–218CrossRefPubMedGoogle Scholar
  25. 25.
    Van der Wiel HE, Lips P, Nauta J et al (1993) Intranasal calcitonin suppresses increased bone resorption during short-term immobilization: a double-blind study of the effects of intranasal calcitonin on biochemical parameters of bone turnover. J Bone Miner Res 8:1459–1465CrossRefPubMedGoogle Scholar
  26. 26.
    Zerwekh JE, Ruml LA, Gottschalk F et al (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13:1594–1601CrossRefPubMedGoogle Scholar
  27. 27.
    Rittweger J, Belavy DL, Hunek P et al (2006) The Berlin Bed-Rest Study: maintenance of a highly demanding resistive vibration exercise program during 56 days of strict bed-rest. Int J Sport Med 27:553–559CrossRefGoogle Scholar
  28. 28.
    Blottner D, Salanova M, Puttmann B et al (2006) Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol 97:261–271CrossRefPubMedGoogle Scholar
  29. 29.
    Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36:133–149CrossRefPubMedGoogle Scholar
  30. 30.
    Nishizawa Y, Nakamura T, Ohta H et al (2005) Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). J Bone Miner Metab 23:97–104CrossRefPubMedGoogle Scholar
  31. 31.
    Mulder ER, Gerrits KH, Kleine BU et al (2007) High-density surface EMG study on the time course of central nervous and peripheral neuromuscular changes during 8weeks of bed rest with or without resistive vibration exercise. J Electromyogr Kinesiol: . doi:10.1016/j.jelekin.2007.1004.1002 Google Scholar
  32. 32.
    Mulder ER, Stegeman DF, Gerrits KH et al (2006) Strength, size and activation of knee extensors followed during 8 weeks of horizontal bed rest and the influence of a countermeasure. Eur J Appl Physiol 97:706–715CrossRefPubMedGoogle Scholar
  33. 33.
    Belavý DL, Richardson CA, Wilson SJ et al (2007) Superficial lumbo-pelvic muscle overactivity and decreased co-contraction after 8 weeks of bed rest. Spine 32:E23–29CrossRefPubMedGoogle Scholar
  34. 34.
    Belavý DL, Richardson CA, Wilson SJ et al (2007) Tonic to phasic shift of lumbo-pelvic muscle activity during 8 weeks of bed rest and 6-months follow-up. J Appl Physiol 103:48–54CrossRefPubMedGoogle Scholar
  35. 35.
    Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, BerlinGoogle Scholar
  36. 36.
    Arnaud SB, Sherrard DJ, Maloney N et al (1992) Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Environ Med 63:14–20PubMedGoogle Scholar
  37. 37.
    Brown EM, Gamba G, Riccardi D et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580CrossRefPubMedGoogle Scholar
  38. 38.
    Morey-Holton ER, Whalen RT, Arnaud SB et al (1983) The skeleton and its adaptation to gravity. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology—environmental physiology. Oxford University Press, New York, pp 691–719Google Scholar
  39. 39.
    Holick MF (1998) Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 22:105S–111SCrossRefPubMedGoogle Scholar
  40. 40.
    Hughes-Fulford M (1993) Review of the biological effects of weightlessness on the human endocrine system. Receptor 3:145–154PubMedGoogle Scholar
  41. 41.
    Morey-Holton ER, Schnoes HK, DeLuca HF et al (1988) Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviat Space Environ Med 59:1038–1041PubMedGoogle Scholar
  42. 42.
    Vico L, Lafage-Proust MH, Alexandre C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S–100SCrossRefPubMedGoogle Scholar
  43. 43.
    Herrmann M, Muller M, Scharhag J et al (2007) The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin Chem Lab Med 45:1381–1389CrossRefPubMedGoogle Scholar
  44. 44.
    Guillemant J, Accarie C, Peres G et al (2004) Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int 74:407–414CrossRefPubMedGoogle Scholar
  45. 45.
    Whipple TJ, Le BH, Demers LM et al (2004) Acute effects of moderate intensity resistance exercise on bone cell activity. Int J Sports Med 25:496–501CrossRefPubMedGoogle Scholar
  46. 46.
    Baecker N, Tomic A, Mika C et al (2003) Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J Appl Physiol 95:977–982PubMedGoogle Scholar
  47. 47.
    Rittweger J, Felsenberg D (2009) Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 44:214–224CrossRefPubMedGoogle Scholar
  48. 48.
    Sibonga JD, Evans HJ, Sung HG et al (2007) Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone 41:973–978CrossRefPubMedGoogle Scholar
  49. 49.
    Smith SM, Wastney ME, Morukov BV et al (1999) Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am J Physiol Regulatory Integrative Comp Physiol 277:1–10Google Scholar
  50. 50.
    Donaldson CL, Hulley SB, Vogel JM et al (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19:1071–1084CrossRefPubMedGoogle Scholar
  51. 51.
    Le Blanc AD, Schneider VS, Evans HJ et al (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850CrossRefGoogle Scholar
  52. 52.
    Lueken SA, Arnaud SB, Taylor AK et al (1993) Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J Bone Miner Res 8:1433–1438CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • G. Armbrecht
    • 1
  • D. L. Belavý
    • 1
  • U. Gast
    • 1
  • M. Bongrazio
    • 1
  • F. Touby
    • 1
  • G. Beller
    • 1
  • H. J. Roth
    • 2
  • F. H. Perschel
    • 3
  • J. Rittweger
    • 4
  • D. Felsenberg
    • 1
  1. 1.Zentrum für Muskel- und KnochenforschungCharité Campus Benjamin FranklinBerlinGermany
  2. 2.Labor Limbach, Abteilung für Endokrinologie und OnkologieHeidelbergGermany
  3. 3.Zentralinstitut für Laboratoriumsmedizin und PathobiochemieCharité Campus Benjamin FranklinBerlinGermany
  4. 4.Institute for Biomedical Research into Human Movement and HealthManchester Metropolitan UniversityManchesterUK

Personalised recommendations