Osteoporosis International

, Volume 21, Issue 2, pp 263–273 | Cite as

Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy

  • A. Cohen
  • D. W. Dempster
  • R. Müller
  • X. E. Guo
  • T. L. Nickolas
  • X. S. Liu
  • X. H. Zhang
  • A. J. Wirth
  • G. H. van Lenthe
  • T. Kohler
  • D. J. McMahon
  • H. Zhou
  • M. R. Rubin
  • J. P. Bilezikian
  • J. M. Lappe
  • R. R. Recker
  • E. Shane
Original Article

Abstract

Summary

We compared microarchitecture and mechanical competence parameters measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite-element analysis of radius and tibia to those measured by histomorphometry, micro-CT, and finite-element analysis of transiliac bone biopsies. Correlations were weak to moderate between parameters measured on biopsies and scans.

Introduction

HR-pQCT is a new imaging technique that assesses trabecular and cortical bone microarchitecture of the radius and tibia in vivo. The purpose of this study was to determine the extent to which microarchitectural variables measured by HR-pQCT reflect those measured by the “gold standard,” transiliac bone biopsy.

Methods

HR-pQCT scans (Xtreme CT, Scanco Medical AG) and iliac crest bone biopsies were performed in 54 subjects (aged 39 ± 10 years). Biopsies were analyzed by 2D quantitative histomorphometry and 3D microcomputed tomography (µCT). Apparent Young’s modulus, an estimate of mechanical competence or strength, was determined by micro-finite-element analysis (µFE) of biopsy µCT and HR-pQCT images.

Results

The strongest correlations observed were between trabecular parameters (bone volume fraction, number, separation) measured by µCT of biopsies and HR-pQCT of the radius (R 0.365–0.522; P < 0.01). Cortical width of biopsies correlated with cortical thickness by HR-pQCT, but only at the tibia (R = 0.360, P < 0.01). Apparent Young’s modulus calculated by µFE of biopsies correlated with that calculated for both radius (R = 0.442; P < 0.001) and tibia (R = 0.380; P < 0.001) HR-pQCT scans.

Conclusions

The associations between peripheral (HR-pQCT) and axial (transiliac biopsy) measures of microarchitecture and estimated mechanical competence are significant but modest.

Keywords

Bone density Bone imaging Bone structure 

Notes

Conflicts of interest

The authors have no financial relationship with the organizations that sponsored the research and have no disclosures. The authors have had full control of all primary data and agree to allow the journal to review their data if requested.

References

  1. 1.
    Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone 27:277–282CrossRefPubMedGoogle Scholar
  2. 2.
    Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free micro-finite element analysis of human bone structures. Int J Numer Methods Eng 73:927–947. doi:910.1002/nme.2101 CrossRefGoogle Scholar
  3. 3.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515CrossRefPubMedGoogle Scholar
  4. 4.
    Boutroy S, van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analyses based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399CrossRefPubMedGoogle Scholar
  5. 5.
    Boyd SK, Muller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17:687–694CrossRefPubMedGoogle Scholar
  6. 6.
    Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184CrossRefPubMedGoogle Scholar
  7. 7.
    Chen P, Miller PD, Recker R, Resch H, Rana A, Pavo I, Sipos AA (2007) Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res 22:1173–1180CrossRefPubMedGoogle Scholar
  8. 8.
    Courpron P, Meunier PJ, Bressot C, Giroux JM (1976) Amount of bone in iliac crest biopsy: significance of the trabecular bone volume. Its values in normal and pathological conditions. In: Meunier PJ (ed) Proc Second International Workshop on Bone Histomorphometry. Society de la Nouvelle Imprimerie Fournie, Toulouse, pp 39–53Google Scholar
  9. 9.
    Dempster DW, Shane E (2002) Bone quantification and dynamics of bone turnover. In: Becker KL (ed) Principles and practice of endocrinology and metabolism. Lippincott, Philadelphia, pp 475–479Google Scholar
  10. 10.
    Dempster DW, Parisien M, Silverberg SJ, Liang XG, Schnitzer M, Shen V, Shane E, Kimmel DB, Recker R, Lindsay R, Bilezikian JP (1999) On the mechanism of cancellous bone preservation in postmenopausal women with mild primary hyperparathyroidism. J Clin Endocrinol Metab 84:1562–1566CrossRefPubMedGoogle Scholar
  11. 11.
    Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetic K, Muller R, Bilezikian J, Lindsay R (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16:1846–1853CrossRefPubMedGoogle Scholar
  12. 12.
    Dempster DW, Muller R, Zhou H, Kohler T, Shane E, Parisien M, Silverberg SJ, Bilezikian JP (2007) Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 41:19–24CrossRefPubMedGoogle Scholar
  13. 13.
    Donovan MA, Dempster D, Zhou H, McMahon DJ, Fleischer J, Shane E (2005) Low bone formation in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 90:3331–3336CrossRefPubMedGoogle Scholar
  14. 14.
    Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 17:2094–2105CrossRefPubMedGoogle Scholar
  15. 15.
    Goldner J (1938) A modification of the Masson trichrome technique for routine laboratory purposes. Am J Pathol 14:237–243PubMedGoogle Scholar
  16. 16.
    Guilak F (1994) Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J Microsc 173:245–256PubMedGoogle Scholar
  17. 17.
    Hildebrand T, Ruegsegger P (1997) Quantification of Bone Microarchitecture with the Structure Model Index. Comput Methods Biomech Biomed Eng 1:15–23CrossRefGoogle Scholar
  18. 18.
    Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174CrossRefPubMedGoogle Scholar
  19. 19.
    Hollister SJ, Brennan JM, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27:433–444CrossRefPubMedGoogle Scholar
  20. 20.
    Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27:271–276CrossRefPubMedGoogle Scholar
  21. 21.
    Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K (1998) Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture. Bone 23:163–169CrossRefPubMedGoogle Scholar
  22. 22.
    Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF (1990) A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 11:217–235CrossRefPubMedGoogle Scholar
  23. 23.
    Kurland ES, Rosen CJ, Cosman F, McMahon D, Chan F, Shane E, Lindsay R, Dempster D, Bilezikian JP (1997) Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 82:2799–2805CrossRefPubMedGoogle Scholar
  24. 24.
    Ladd AJ, Kinney JH, Haupt DL, Goldstein SA (1998) Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res 16:622–628CrossRefPubMedGoogle Scholar
  25. 25.
    Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24:35–39CrossRefPubMedGoogle Scholar
  26. 26.
    Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23:69–74CrossRefPubMedGoogle Scholar
  27. 27.
    Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546CrossRefPubMedGoogle Scholar
  28. 28.
    Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337PubMedGoogle Scholar
  29. 29.
    MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105CrossRefPubMedGoogle Scholar
  30. 30.
    Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892CrossRefPubMedGoogle Scholar
  31. 31.
    Melton LJ 3rd, Riggs BL, van Lenthe GH, Achenbach SJ, Muller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448CrossRefPubMedGoogle Scholar
  32. 32.
    Meunier PJ, Bressot C (1983) Endocrine influences on bone cells and bone remodeling evaluated by clinical histomorphometry. Raven, New YorkGoogle Scholar
  33. 33.
    Miki T, Nakatsuka K, Naka H, Masaki H, Imanishi Y, Ito M, Inaba M, Morii H, Nishizawa Y (2004) Effect and safety of intermittent weekly administration of human parathyroid hormone 1-34 in patients with primary osteoporosis evaluated by histomorphometry and microstructural analysis of iliac trabecular bone before and after 1 year of treatment. J Bone Miner Metab 22:569–576CrossRefPubMedGoogle Scholar
  34. 34.
    Muller R, Hildebrand T, Hauselmann HJ, Ruegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11:1745–1750PubMedGoogle Scholar
  35. 35.
    Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66CrossRefPubMedGoogle Scholar
  36. 36.
    Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409CrossRefPubMedGoogle Scholar
  37. 37.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedGoogle Scholar
  38. 38.
    Parisien M, Silverberg SJ, Shane E, de la Cruz L, Lindsay R, Bilezikian JP, Dempster DW (1990) The histomorphometry of bone in primary hyperparathyroidism: preservation of cancellous bone structure. J Clin Endocrinol Metab 70:930–938CrossRefPubMedGoogle Scholar
  39. 39.
    Parisien M, Mellish RW, Silverberg SJ, Shane E, Lindsay R, Bilezikian JP, Dempster DW (1992) Maintenance of cancellous bone connectivity in primary hyperparathyroidism: trabecular strut analysis. J Bone Miner Res 7:913–919PubMedGoogle Scholar
  40. 40.
    Parisien M, Cosman F, Mellish RW, Schnitzer M, Nieves J, Silverberg SJ, Shane E, Kimmel D, Recker RR, Bilezikian JP et al (1995) Bone structure in postmenopausal hyperparathyroid, osteoporotic, and normal women. J Bone Miner Res 10:1393–1399PubMedCrossRefGoogle Scholar
  41. 41.
    Recker RR, Barger-Lux MJ Transilial bone biopsy. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic, San Diego, p 1625-1634Google Scholar
  42. 42.
    Recker R, Lappe J, Davies KM, Heaney R (2004) Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res 19:1628–1633CrossRefPubMedGoogle Scholar
  43. 43.
    Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren L, Kimmel D (2005) Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 21:185–194CrossRefPubMedGoogle Scholar
  44. 44.
    Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214CrossRefPubMedGoogle Scholar
  45. 45.
    Rubin MR, Dempster DW, Sliney J, Compito C, Müller R, Paschalis EP, Roschger P, Zoehrer R, Klaushofer K, Zhou H, Kohler T, Silverberg SJ, Bilezikian JP (2006) Indices of bone quality are markedly abnormal in hypoparathyroidism. In: American Society for Bone and Mineral Research 28th Annual Meeting and JBMR in press, Philadelphia, PAGoogle Scholar
  46. 46.
    Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29CrossRefPubMedGoogle Scholar
  47. 47.
    Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433CrossRefPubMedGoogle Scholar
  48. 48.
    Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T (1997) A morphometric comparison of trabecular structure of human ilium between microcomputed tomography and conventional histomorphometry. Calcif Tissue Int 61:493–498CrossRefPubMedGoogle Scholar
  49. 49.
    Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29:1653–1657PubMedGoogle Scholar
  50. 50.
    Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • A. Cohen
    • 1
  • D. W. Dempster
    • 2
  • R. Müller
    • 3
  • X. E. Guo
    • 4
  • T. L. Nickolas
    • 1
  • X. S. Liu
    • 4
  • X. H. Zhang
    • 4
  • A. J. Wirth
    • 3
  • G. H. van Lenthe
    • 3
  • T. Kohler
    • 3
  • D. J. McMahon
    • 1
  • H. Zhou
    • 2
  • M. R. Rubin
    • 1
  • J. P. Bilezikian
    • 1
  • J. M. Lappe
    • 5
  • R. R. Recker
    • 5
  • E. Shane
    • 1
  1. 1.Department of Medicine, PH8-864Columbia University, College of Physicians and SurgeonsNew YorkUSA
  2. 2.Helen Hayes HospitalWest HaverstrawUSA
  3. 3.ETH ZurichZurichSwitzerland
  4. 4.Bone Bioengineering LaboratoryDepartment of Biomedical Engineering, Columbia UniversityNew YorkUSA
  5. 5.Creighton UniversityOmahaUSA

Personalised recommendations