Osteoporosis International

, Volume 21, Issue 1, pp 99–107

Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families

  • X.-H. Xu
  • D.-H. Xiong
  • X.-G. Liu
  • Y. Guo
  • Y. Chen
  • J. Zhao
  • R. R. Recker
  • H.-W. Deng
Original Article

Abstract

Summary

This study was conducted to test whether there exists an association between vitamin D-binding protein (DBP) gene and compression strength index (CSI) phenotype. Candidate gene association analyses were conducted in total sample, male subgroup, and female subgroup, respectively. Two single-nucleotide polymorphisms (SNPs) with significant association results were found in males, suggesting the importance of DBP gene polymorphisms on the variation in CSI especially in Caucasian males.

Introduction

CSI of the femoral neck (FN) is a newly developed phenotype integrating information about bone size, body size, and bone mineral density. It is considered to have the potential to improve the performance of risk assessment for hip fractures because it is based on a combination of phenotypic traits influencing hip fractures rather than a single trait. CSI is under moderate genetic determination (with a heritability of ∼44% found in this study), but the relevant genetic study is still rather scarce.

Methods

Based on the known physiological role of DBP in bone biology and the relatively high heritability of CSI, we tested 12 SNPs of the DBP gene for association with CSI variation in 405 Caucasian nuclear families comprising 1,873 subjects from the Midwestern US. Association analyses were performed in the total sample, male and female subgroups, respectively.

Results

Significant associations with CSI were found with two SNPs (rs222029, P = 0.0019; rs222020, P = 0.0042) for the male subgroup. Haplotype-based association tests corroborated the single-SNP results.

Conclusions

Our findings suggest that the DBP gene might be one of the genetic factors influencing CSI phenotype in Caucasians, especially in males.

Keywords

Association Compression strength index DBP Haplotype SNP 

References

  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  2. 2.
    Lau EM (2001) Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol 15:335–344CrossRefPubMedGoogle Scholar
  3. 3.
    Braithwaite RS, Col NF, Wong JB (2003) Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc 51:364–370CrossRefPubMedGoogle Scholar
  4. 4.
    March LM, Cameron ID, Cumming RG et al (2000) Mortality and morbidity after hip fracture: can evidence based clinical pathways make a difference? J Rheumatol 27:2227–2231PubMedGoogle Scholar
  5. 5.
    Campion EW, Jette AM, Cleary PD et al (1987) Hip fracture: a prospective study of hospital course, complications, and costs. J Gen Intern Med 2:78–82CrossRefPubMedGoogle Scholar
  6. 6.
    Lauritzen JB (1997) Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention. Dan Med Bull 44:155–168PubMedGoogle Scholar
  7. 7.
    Melton LJ 3rd, Atkinson EJ, O'Fallon WM et al (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233PubMedGoogle Scholar
  8. 8.
    Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18PubMedGoogle Scholar
  9. 9.
    Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954CrossRefPubMedGoogle Scholar
  10. 10.
    Black DM, Bouxsein ML, Marshall LM et al (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23:1326–1333CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng XG, Lowet G, Boonen S et al (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20:213–218CrossRefPubMedGoogle Scholar
  12. 12.
    Brownbill RA, Ilich JZ (2003) Hip geometry and its role in fracture: what do we know so far? Curr Osteoporos Rep 1:25–31CrossRefPubMedGoogle Scholar
  13. 13.
    Karlamangla AS, Barrett-Connor E, Young J et al (2004) Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 15:62–70CrossRefPubMedGoogle Scholar
  14. 14.
    Prentice A (2001) The relative contribution of diet and genotype to bone development. Proc Nutr Soc 60:45–52CrossRefPubMedGoogle Scholar
  15. 15.
    Peacock M, Koller DL, Lai D et al (2005) Sex-specific quantitative trait loci contribute to normal variation in bone structure at the proximal femur in men. Bone 37:467–473CrossRefPubMedGoogle Scholar
  16. 16.
    Bayoumi RA, Al-Yahyaee SA, Albarwani SA et al (2007) Heritability of determinants of the metabolic syndrome among healthy Arabs of the Oman family study. Obesity (Silver Spring) 15:551–556CrossRefGoogle Scholar
  17. 17.
    Gomme PT, Bertolini J (2004) Therapeutic potential of vitamin D-binding protein. Trends Biotechnol 22:340–345CrossRefPubMedGoogle Scholar
  18. 18.
    White P, Cooke N (2000) The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 11:320–327CrossRefPubMedGoogle Scholar
  19. 19.
    Papiha SS, Allcroft LC, Kanan RM et al (1999) Vitamin D binding protein gene in male osteoporosis: association of plasma DBP and bone mineral density with (TAAA)(n)-Alu polymorphism in DBP. Calcif Tissue Int 65:262–266CrossRefPubMedGoogle Scholar
  20. 20.
    Safadi FF, Thornton P, Magiera H et al (1999) Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 103:239–251CrossRefPubMedGoogle Scholar
  21. 21.
    Xiong DH, Liu YZ, Liu PY et al (2005) Association analysis of estrogen receptor alpha gene polymorphisms with cross-sectional geometry of the femoral neck in Caucasian nuclear families. Osteoporos Int 16:2113–2122CrossRefPubMedGoogle Scholar
  22. 22.
    Reid DM, Mackay I, Wilkinson S et al (2006) Cross-calibration of dual-energy X-ray densitometers for a large, multi-center genetic study of osteoporosis. Osteoporos Int 17:125–132CrossRefPubMedGoogle Scholar
  23. 23.
    Genant HK, Grampp S, Gluer CC et al (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514PubMedCrossRefGoogle Scholar
  24. 24.
    Huang QY, Xu FH, Shen H et al (2004) Genome scan for QTLs underlying bone size variation at 10 refined skeletal sites: genetic heterogeneity and the significance of phenotype refinement. Physiol Genomics 17:326–331CrossRefPubMedGoogle Scholar
  25. 25.
    Shen H, Zhang YY, Long JR et al (2004) A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Xq27. J Med Genet 41:743–751CrossRefPubMedGoogle Scholar
  26. 26.
    Xiong DH, Shen H, Xiao P et al (2006) Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 21:424–437CrossRefPubMedGoogle Scholar
  27. 27.
    Rivadeneira F, Houwing-Duistermaat JJ, Beck TJ et al (2004) The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly: the Rotterdam Study. J Bone Miner Res 19:1280–1290CrossRefPubMedGoogle Scholar
  28. 28.
    Gu D, Rice T, Wang S et al (2007) Heritability of blood pressure responses to dietary sodium and potassium intake in a Chinese population. Hypertension 50:116–122CrossRefPubMedGoogle Scholar
  29. 29.
    Luke A, Guo X, Adeyemo AA et al (2001) Heritability of obesity-related traits among Nigerians, Jamaicans and US black people. Int J Obes Relat Metab Disord 25:1034–1041CrossRefPubMedGoogle Scholar
  30. 30.
    Liu XG, Liu YJ, Liu J et al (2008) A bivariate whole genome linkage study identified genomic regions influencing both BMD and bone structure. J Bone Miner Res 23:1806–1814CrossRefPubMedGoogle Scholar
  31. 31.
    O'Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266CrossRefPubMedGoogle Scholar
  32. 32.
    Abecasis GR, Cherny SS, Cookson WO et al (2002) Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101CrossRefPubMedGoogle Scholar
  33. 33.
    Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462CrossRefPubMedGoogle Scholar
  34. 34.
    Abecasis GR, Cookson WO (2000) GOLD—graphical overview of linkage disequilibrium. Bioinformatics 16:182–183CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang K, Jin L (2003) HaploBlockFinder: haplotype block analyses. Bioinformatics 19:1300–1301CrossRefPubMedGoogle Scholar
  36. 36.
    Li J, Jiang T (2005) Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming. J Comput Biol 12:719–739CrossRefPubMedGoogle Scholar
  37. 37.
    Horvath S, Xu X, Laird NM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9:301–306CrossRefPubMedGoogle Scholar
  38. 38.
    Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769CrossRefPubMedGoogle Scholar
  39. 39.
    Benis KA, Schneider GB (1996) The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats. Blood 88:2898–2905PubMedGoogle Scholar
  40. 40.
    Schneider GB, Benis KA, Flay NW et al (1995) Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations. Bone 16:657–662CrossRefPubMedGoogle Scholar
  41. 41.
    Yamamoto N, Naraparaju VR, Orchard PJ (1996) Defective lymphocyte glycosidases in the macrophage activation cascade of juvenile osteopetrosis. Blood 88:1473–1478PubMedGoogle Scholar
  42. 42.
    Rapado A, Hawkins F, Sobrinho L et al (1999) Bone mineral density and androgen levels in elderly males. Calcif Tissue Int 65:417–421CrossRefPubMedGoogle Scholar
  43. 43.
    Sipila S, Heikkinen E, Cheng S et al (2006) Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci 61:92–96PubMedGoogle Scholar
  44. 44.
    Bischoff HA, Stahelin HB, Tyndall A et al (2000) Relationship between muscle strength and vitamin D metabolites: are there therapeutic possibilities in the elderly? Z Rheumatol 59(Suppl 1):39–41CrossRefPubMedGoogle Scholar
  45. 45.
    Yang L, Peel N, Clowes JA et al (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24:33–42CrossRefPubMedGoogle Scholar
  46. 46.
    Irdesel J, Ar I (2006) The relationship between the proximal femur morphometry and bone mineral density in Turkish women. Minerva Med 97:153–159PubMedGoogle Scholar
  47. 47.
    Xu H, Long JR, Yang YJ et al (2006) Genetic determination and correlation of body weight and body mass index (BMI) and cross-sectional geometric parameters of the femoral neck. Osteoporos Int 17:1602–1607CrossRefPubMedGoogle Scholar
  48. 48.
    Harris SS, Dawson-Hughes B (1996) Weight, body composition, and bone density in postmenopausal women. Calcif Tissue Int 59:428–432PubMedGoogle Scholar
  49. 49.
    Cornier MA, Dabelea D, Hernandez TL et al (2008) The metabolic syndrome. Endocr Rev 29:777–822CrossRefPubMedGoogle Scholar
  50. 50.
    Smith CB, Smith DA (1976) Relations between age, mineral density and mechanical properties of human femoral compacta. Acta Orthop Scand 47:496–502PubMedGoogle Scholar
  51. 51.
    Cole JH, Scerpella TA, van der Meulen MC (2005) Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom 8:57–64CrossRefPubMedGoogle Scholar
  52. 52.
    Griffiths MR, Noakes KA, Pocock NA (1997) Correcting the magnification error of fan beam densitometers. J Bone Miner Res 12:119–123CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • X.-H. Xu
    • 1
  • D.-H. Xiong
    • 2
  • X.-G. Liu
    • 1
  • Y. Guo
    • 1
  • Y. Chen
    • 1
  • J. Zhao
    • 1
  • R. R. Recker
    • 3
  • H.-W. Deng
    • 1
    • 2
    • 4
  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Departments of Orthopedic Surgery and Basic Medical Sciences, School of MedicineUniversity of Missouri-Kansas CityKansas CityUSA
  3. 3.Osteoporosis Research Center and Department of Biomedical SciencesCreighton UniversityOmahaUSA
  4. 4.Laboratory of Molecular and Statistical Genetics, College of Life SciencesHunan Normal UniversityChangshaPeople’s Republic of China
  5. 5.Department of Basic Medical Science, School of MedicineUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations