Osteoporosis International

, Volume 20, Issue 11, pp 1947–1954 | Cite as

Genistein effects on quantitative ultrasound parameters and bone mineral density in osteopenic postmenopausal women

  • M. Atteritano
  • S. Mazzaferro
  • A. Frisina
  • M. L. Cannata
  • A. Bitto
  • R. D’Anna
  • F. Squadrito
  • I. Macrì
  • N. Frisina
  • M. Buemi
Original Article



This study aimed at evaluating the effects of genistein (54 mg/die) on calcaneus and phalanges ultrasound (QUS) parameters and bone mineral density in osteopenic postmenopausal women. We concluded that genistein prevented bone loss in the osteopenic postmenopausal women and improves QUS parameters at the calcaneus and phalanges.


The purpose of the study was to evaluate the effects of genistein (54 mg/die) on quantitative ultrasound (QUS) parameters of the calcaneus and hand phalange and on bone mineral density (BMD) in osteopenic postmenopausal women.


One hundred thirty-eight women (age 49–67 years) were assigned to receive genistein or placebo. Bone status was assessed by measuring the anteroposterior lumbar spine and femoral neck BMD by dual energy X-ray absorptiometry and by ultrasound of the calcaneus (Achilles Plus, GE, Lunar) and of the phalanges (Bone Profiler. IGEA) at baseline and after a 1- and 2-year treatment.


At the end of the experimental period, genistein had significantly increased BMD in the femur and lumbar spine (p < 0.001). The stiffness index, amplitude-dependent speed of sound, and bone transmission time in the genistein group had increased significantly at the end of study (+5.3, p < 0.001; +3.6%, p < 0.001; +4.6, p < 0.001, respectively).


This study confirms that genistein prevented bone loss in the osteopenic postmenopausal women and it improves the QUS parameters.


Bone Densitometry Genistein Menopause Osteopenia Ultrasound 


Conflicts of interest



  1. 1.
    Albright F, Smith PH, Richarson AM (1941) Postmenopausal osteoporosis. JAMA 116(2):465–2474Google Scholar
  2. 2.
    Kanis JA, Melton LJIII, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  3. 3.
    Recker RR (1993) Current therapy for osteoporosis. J Clin Endocrinol Metab 76:14–16CrossRefPubMedGoogle Scholar
  4. 4.
    Scharbo-Dehaan M (1996) Hormone replacement therapy. Nurs Prat 21:1–13Google Scholar
  5. 5.
    Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441CrossRefPubMedGoogle Scholar
  6. 6.
    Ahlborg HG, Johnell O, Karlsson MK (2004) Long term effects of oestrogen therapy on bone loss in postmenopausal women: a 23 year prospective study. BJOG 111:335–339CrossRefPubMedGoogle Scholar
  7. 7.
    Castelo-Branco C, Figueras F, Sanjuan A et al (1999) Long term postmenopausal hormone replacement therapy effects on bone mass:differences between surgical and spontaneous patients. Eur J Obstet Gynecol Reprod Biol 83(2):207–211CrossRefPubMedGoogle Scholar
  8. 8.
    Writing Group for the Women's Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288(3):321–333CrossRefGoogle Scholar
  9. 9.
    Collaborative group on Hormonal Factors in Breast Cancer Breast Cancer and hormone replacement therapy (1997) Collaborative reanalysis of data from 51 epidemiological studies of 52705 women with breast cancer and 108411 women without breast cancer. Lancet 350:1047–1059CrossRefGoogle Scholar
  10. 10.
    Beral V (2003) Million Women Study Collaborators. Breast cancer and hormone replacement therapy in the Million Women Study. Lancet 362:419–427CrossRefPubMedGoogle Scholar
  11. 11.
    Adlecreutz HL, Mazur W (1997) Phyto-estrogen and western disease. Ann Med 29:95–120Google Scholar
  12. 12.
    Horiuchi T, Onouchi T, Takahashi M et al (2000) Effect of soy protein on bone metabolism in postmenopausal Japanese women. Osteoporos Int 11:721–724CrossRefPubMedGoogle Scholar
  13. 13.
    Sha GH, Lin SQ (2008) Genistein inhibits proliferation of human endometrial endothelial cell in vitro. Chin Med Sci J 23(1):49–53CrossRefPubMedGoogle Scholar
  14. 14.
    Yanagihara K, Ito A, Toge T, Numoto M (1993) Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 53(23):5815–5821PubMedGoogle Scholar
  15. 15.
    Bingham SA, Atkinson C, Liggins J et al (1998) Phyo-oestrogens: where are we now? Br J Nutr. 79:393–406CrossRefPubMedGoogle Scholar
  16. 16.
    Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263CrossRefPubMedGoogle Scholar
  17. 17.
    Setchell KD, Lydeking-Olsen E (2003) Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational and dietary intervention studies. Am J Clin Nutr. 78:593S–609SPubMedGoogle Scholar
  18. 18.
    Messina M, Ho S, Alekel DL (2004) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7:649–658CrossRefPubMedGoogle Scholar
  19. 19.
    Morabito N, Crisafulli A, Vergara C et al (2002) Effects of genistein and hormone replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res. 17:1904–1912CrossRefPubMedGoogle Scholar
  20. 20.
    Marini H, Minutoli L, Polito F et al (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a 2-years randomized, double-blind, placebo-controlled study. Annals Internal Medicine 146(12):839–847Google Scholar
  21. 21.
    Crisafulli A, Altavilla D, Squadrito G et al (2004) Effects of the phytoestrogen genistein on the circulating soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin system in early postmenopausal women. J Clin Endocrinol Metab. 89:188–192CrossRefPubMedGoogle Scholar
  22. 22.
    Marini H, Minutoli L, Polito F et al (2008) OPG and sRANKL serum concentrations in osteopenic, postmenopausal women after 2-year genistein administration. J Bone Miner Res 23:715–720 Published online FebruaryCrossRefPubMedGoogle Scholar
  23. 23.
    Atteritano M, Marini H, Polito F et al (2007) Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a 2-years randomized, double-blind, placebo-controlled study. J. Clin Endocr Metab 92(8):3068–3075CrossRefPubMedGoogle Scholar
  24. 24.
    D’Anna R, Cannata ML, Atteritano M et al (2007) Effects of the phytoestrogen genistein on hot flushes, endometrium, and vaginal epithelium in postmenopausal women: a 1-year randomized, double-blind, placebo-controlled study. Menopause 14(4):648–655CrossRefPubMedGoogle Scholar
  25. 25.
    Altavilla D, Crisafulli A, Marini H et al (2004) Cardiovascular effects of the phytoestrogen genistein. Curr Med Chem Cardiovasc Hematol Agents 2:179–186CrossRefPubMedGoogle Scholar
  26. 26.
    Crisafulli A, Marini H, Bitto A et al (2004) Effects of genistein on hot flushes in early postmenopausal women: a randomized, double-blind EPT- and placebo controlled study. Menopause 11:400–404CrossRefPubMedGoogle Scholar
  27. 27.
    Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962CrossRefPubMedGoogle Scholar
  28. 28.
    Adlercreutz H, Wang GJ, Lapcik O et al (1998) Time-resolved fluoroimmunoassay for plasma enterolactone. Anal Biochem. 265:208–215CrossRefPubMedGoogle Scholar
  29. 29.
    Bauer DC (1999) Clinical Applications of quantitative ultrasound. In: Njch CF, Hams D, FuerstT Glueer CC, Genant HK (eds) Quantitative ultrasound assessment of osteoporosis and bone status. Martin Dunitz, London, UK, pp 254–297Google Scholar
  30. 30.
    Glüer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res. 12(8):1280–1288 ReviewCrossRefPubMedGoogle Scholar
  31. 31.
    Lee SC, Coan BS, Bouxsein ML (1997) Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone. 21(1):119–125CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao J, Jiang Y, Hans D et al (1999) QCT, DXA and ultrasound measurement in the distal radius. Osteoporos. Int. 8:515 (abstract)Google Scholar
  33. 33.
    Jiang Y, Zhao J, Rosen C et al (1999) Perspectives on bone mechanical properties and adaptive response to mechanical challenge. J Clin Densitom. 2(4):423–433CrossRefPubMedGoogle Scholar
  34. 34.
    Glüer CC, Hans D (1999) How to use ultrasound for risk assessment: a need for defining strategies. Osteoporos Int. 9(3):193–195CrossRefPubMedGoogle Scholar
  35. 35.
    Marín F, López-Bastida J, Díez-Pérez A, ECOSAP DXA Substudy Group Investigators et al (2004) Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis. Calcif Tissue Int. 74(3):277–283CrossRefPubMedGoogle Scholar
  36. 36.
    Glüer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res. 14(11):1952–1962CrossRefPubMedGoogle Scholar
  37. 37.
    Gonnelli S, Cepollaro C, Montagnani A et al (2002) Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporos Int 13:415–421CrossRefPubMedGoogle Scholar
  38. 38.
    Ingle BM, Machado ABC, Pereda CA et al (2005) Monitoring alendronate and estradiol therapy with quantitative ultrasound and bone mineral density. J Clin Densitom. 8(3):278–286CrossRefPubMedGoogle Scholar
  39. 39.
    Krieg MA, Barkmann R, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Position. J Clin Densitometry 11:163–187CrossRefGoogle Scholar
  40. 40.
    Lenora J, Gerdhem P, Obrant KJ et al (2008). Bone turnover markers are correlated with quantitative ultrasound of the calcaneus: 5-year longitudinal data. Osteoporos Int. doi: 10.1007/s00198-008-0769-x

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • M. Atteritano
    • 1
  • S. Mazzaferro
    • 1
  • A. Frisina
    • 1
  • M. L. Cannata
    • 2
  • A. Bitto
    • 3
  • R. D’Anna
    • 2
  • F. Squadrito
    • 3
  • I. Macrì
    • 1
  • N. Frisina
    • 1
  • M. Buemi
    • 1
  1. 1.Department of Internal MedicineUniversity of MessinaMessinaItaly
  2. 2.Department of Obstetrical and Gynecological SciencesUniversity of MessinaMessinaItaly
  3. 3.Department of Clinical and Experimental Medicine and Pharmacology, Section of PharmacologyUniversity of MessinaMessinaItaly

Personalised recommendations