Osteoporosis International

, Volume 20, Issue 6, pp 1013–1021 | Cite as

Bone mineral: update on chemical composition and structure

  • C. Rey
  • C. Combes
  • C. Drouet
  • M. J. Glimcher
Bone Quality Seminars: Ultrastructure


The structure of the Ca–P solid phase in bone was first identified by deJong in 1926 as a crystalline calcium phosphate similar to geological apatite by chemical analyses and, most importantly, by X-ray diffraction [ 1]. The X-ray diffraction data was confirmed a few years later [ 2].


Apatite Collagen Fibril DCPD Amorphous Calcium Phosphate Apatite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the help of Phillips Brady and other members of the Massachusetts Department of Fisheries, which enabled us to obtain large numbers of live fish. The research projects were supported by grants from NIH (grant no. AG0 14701-18; Melvin Glimcher) and The Peabody Foundation (Melvin Glimcher).

Conflicts of interest



  1. 1.
    de Jong WF (1926) La substance minerale dans les os. Recl Trav Chim Pays—Bas Belg 45:445–448Google Scholar
  2. 2.
    Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:395–407Google Scholar
  3. 3.
    Rey C, Miquel J, Facchini L, Legrand A et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586PubMedCrossRefGoogle Scholar
  4. 4.
    Pasteris JD, Wopenka B, Freeman JJ et al (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238PubMedCrossRefGoogle Scholar
  5. 5.
    Loong CK, Rey C, Kuhn LT et al (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602PubMedCrossRefGoogle Scholar
  6. 6.
    Wu Y, Ackerman JL, Kim H-M et al (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatite. J Bone Miner Res 17:472–480PubMedCrossRefGoogle Scholar
  7. 7.
    Wu Y, Glimcher MJ, Rey C et al (1994) A unique protonated phosphate group in bone mineral and not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J Mol Biol 244:423–435PubMedCrossRefGoogle Scholar
  8. 8.
    Stuhler R (1938) In: Fortschr Gebiete Rontgenstrahlen 57:231Google Scholar
  9. 9.
    Robinson RA (1952) An electron microscopic study of the crystalline inorganic components of bone and its relationship to the organic matrix. J Bone Joint Surg 34:389–476PubMedGoogle Scholar
  10. 10.
    Robinson RA, Watson ML (1953) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383–409CrossRefGoogle Scholar
  11. 11.
    Robinson RA, Watson ML (1955) Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–628PubMedCrossRefGoogle Scholar
  12. 12.
    Engstrom A, Finean JB (1953) Low-angle X-ray diffraction of bone. Nature 171:564PubMedCrossRefGoogle Scholar
  13. 13.
    Finean JB, Engstrom A (1953) The low-angle scatter of X-rays from bone tissue. Biochim Biophys Acta 11:178–189PubMedCrossRefGoogle Scholar
  14. 14.
    Finean JB, Engstrom A (1954) Low-angle reflection in X-ray diffraction patterns of bone tissue. Experientia 10:63–64PubMedCrossRefGoogle Scholar
  15. 15.
    Carlstrom D, Finean J (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191PubMedCrossRefGoogle Scholar
  16. 16.
    Bocciarelli DS (1973) Apatite microcrystals in bone and dentin. J Microsc 16:21–34Google Scholar
  17. 17.
    Bocciarelli DS (1970) Morphology of crystallites in bone. Calcif Tissue Res 5:261–69PubMedCrossRefGoogle Scholar
  18. 18.
    Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601PubMedCrossRefGoogle Scholar
  19. 19.
    Tong W, Glimcher MJ, Katz JL et al (2003) Size and shape of mineralities in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598PubMedCrossRefGoogle Scholar
  20. 20.
    Eppell SJ, Tong W, Katz JL et al (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034PubMedCrossRefGoogle Scholar
  21. 21.
    Rey C, Miquel JL, Facchini L et al (1995) Hydroxyl groups in bone mineral. Bone 16(5):583–86PubMedCrossRefGoogle Scholar
  22. 22.
    Glimcher MJ, Hodge AJ, Schmitt FO (1957) Macromolecular aggregation states in relation to mineralization: the collagen hydroxyapatite system as studied in vitro. Proc Natl Acad Sci USA 43:860–867PubMedCrossRefGoogle Scholar
  23. 23.
    Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359–393CrossRefGoogle Scholar
  24. 24.
    Glimcher MJ (1960) Specificity of the molecular structure of organic matrices in mineralization. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Science, Washington, DC, pp 421–487Google Scholar
  25. 25.
    Chen J, Burger C, Krishnan CV et al (2005) In vitro mineralization of collagen in demineralized fish bone. Macromol Chem Phys 206:43–51CrossRefGoogle Scholar
  26. 26.
    Katz EP (1969) The kinetics of mineralization in vitro. Biochim Biophys Acta 194:121–129PubMedGoogle Scholar
  27. 27.
    Wang J, Zhou HY, Salih E et al (2004). Bone sialoprotein elicits mineralization and ossification in a bone defect model. In: Sodek J, Landis W (eds.) Proceedings of 8th International Conference on Chemistry and Biology of Mineralized Tissue, Oct. 17–24, 2004, Banff, Alberta, Canada. University of Toronto Press, Toronto, pp. 139–142Google Scholar
  28. 28.
    Wang J, Zhou HY, Salih E et al (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79:179–189PubMedCrossRefGoogle Scholar
  29. 29.
    Ce Tye, Rattray KR, Warner KJ et al (2003) Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem 278:7949–7955CrossRefGoogle Scholar
  30. 30.
    Wu Y, Ackerman JL, Strawich ES et al (2003) Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int 72:610–26PubMedCrossRefGoogle Scholar
  31. 31.
    Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N, Schoonen MAA (eds) (2006), Medical Mineralogy and Geochemistry, vol 64. The Mineralogical Society of America, Chantilly, Virginia, pp 223–282Google Scholar
  32. 32.
    Eanes ED, Harper RA, Gillessen IH et al (1966) An amorphous component in bone mineral. In: Galliard PJ, van der Hoff A, Steendyk R (eds.) (1966), Proceedings of 4th European Symposium on Calcified Tissues. Amsterdam: Excerpta Medica, Amsterdam, pp. 24–26Google Scholar
  33. 33.
    Termine JD, Posner AS (1967) Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 153:1523–1525CrossRefGoogle Scholar
  34. 34.
    Blumenthal N, Posner A (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Int 13:235–243CrossRefGoogle Scholar
  35. 35.
    Posner A, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral. Acc Chem Res 8:273–281CrossRefGoogle Scholar
  36. 36.
    Boskey AL, Posner AS (1976) Extraction of a calcium-phosphate complex from bone. Calcif Tissue Res 19:273–283PubMedCrossRefGoogle Scholar
  37. 37.
    Glimcher M, Hanson J, Hori et al (2004) Structural Analysis of the earliest Ca-P solid phase in Bone measured in situ. Referred manuscript published in Proceedings of the 8th ICCBMT, Banff, Alberta, Canada, Oct. 17–22, 2004, p. 254Google Scholar
  38. 38.
    Heughebaert JC, Montel G (1982) Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate. Calif Tissue Int 34:S103–S108CrossRefGoogle Scholar
  39. 39.
    Mathew M, Brown WE, Schroeder LW (1988) Crystal structure of octacalcium bis-(hydrogenphosphate) tetrakis(phosphate)-pentahydrate, Ca8(HPO4) 2(PO4) 4 5 H2O. J. Cryst Spec Res 18:235–250CrossRefGoogle Scholar
  40. 40.
    Lyengar GV, Tandon L (1999) Minor and trace elements in human bones and teeth. International Atomic Energy Agency, NAHRES-39 report, ViennaGoogle Scholar
  41. 41.
    Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago Press, ChicagoGoogle Scholar
  42. 42.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, AmserdamGoogle Scholar
  43. 43.
    Pellegrino ED, Blitz RM (1972) Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calif Tissue Res 10:128–135CrossRefGoogle Scholar
  44. 44.
    Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292PubMedGoogle Scholar
  45. 45.
    Legeros RZ (1994) Biological and synthetic apatites. In: Brown PW, Constanz B (eds) Hydroxyapatite and related materials. CRC, Boca Raton, pp 3–28Google Scholar
  46. 46.
    Legeros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144CrossRefGoogle Scholar
  47. 47.
    Wilson RM, Elliott JC, Dowker SEP et al (2005) Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson RM, Dowker SEP, Elliott JC (2005) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27:4682–4692CrossRefGoogle Scholar
  49. 49.
    Labarthe JC, Bonel G, Montel G (1973) Structure and properties of B-type phosphocalcium carbonate apatites. Annales de Chimie (Fr) 8:289–301Google Scholar
  50. 50.
    Roufosse AH, Aue WP, Roberts JE et al (1984) Investigation of the mineral phases of bone by solid state phosphorus-31 magic angle spinning nuclear magnetic resonance. Biochem 23:6115–6120CrossRefGoogle Scholar
  51. 51.
    Rey C, Collins B, Goehl T et al (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164PubMedCrossRefGoogle Scholar
  52. 52.
    Rey C, Shimkizu M, Collins B et al (1990) Resolution enhanced Fourier transform infrared spectroscopic study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. I. Investigation in the v4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRefGoogle Scholar
  53. 53.
    Lu HB, Campbell CT, Graham DJ et al (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72:2886–2894PubMedCrossRefGoogle Scholar
  54. 54.
    Eichert D, Drouet C, Sfihi H et al (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB (ed) Biomaterials research advances. Nova, Commack, NY, pp 93–143Google Scholar
  55. 55.
    Jager C, Welzel T, Meyer-Zaika W et al (2006) A solid state NMR investigation of the structure of nanocrystalline hydroxyaptite. Magn Reson Chem 44:573–580PubMedCrossRefGoogle Scholar
  56. 56.
    Eichert D, Sfihi H, Combes C et al (2004) Specific characteristics of wet nanocrystalline apatites: consequences on biomaterials and bone tissue. Key Eng Mater 254–256:927–930CrossRefGoogle Scholar
  57. 57.
    Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryprochiton stelleri (Mollusca). J Ultrastruc Res 17:1–13CrossRefGoogle Scholar
  58. 58.
    Lowenstam HA, Weiner S (1985) Transformation of amorphous calcium phosphate to crystalline dahllite in the radular teeth of chitons. Science 227:51–53PubMedCrossRefGoogle Scholar
  59. 59.
    Aizenberg J, Lambert G, Weiner S et al (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39PubMedCrossRefGoogle Scholar
  60. 60.
    Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44(Supp 1):20–25PubMedCrossRefGoogle Scholar
  61. 61.
    Weiner S, Levi-Kalisman Y, Raz S et al (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44(Supp 1):214–218PubMedCrossRefGoogle Scholar
  62. 62.
    Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 29:1027–1028CrossRefGoogle Scholar
  63. 63.
    Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433PubMedCrossRefGoogle Scholar
  64. 64.
    Grynpas MD, Omelon S (2007) Transient precursor strategy or very small apatite crystals? Bone 41:162–164PubMedCrossRefGoogle Scholar
  65. 65.
    Crane NJ, Popescu V, Morris MD (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442PubMedCrossRefGoogle Scholar
  66. 66.
    Muenzenberg KG, Gebhardt M (1973) Brushite, octacalcium phosphate, and carbonate-containing apatite in bone. Clin Orthop Rel Res 90:271–273Google Scholar
  67. 67.
    Cazalbous S (2000) PhD thesis, INPT, FranceGoogle Scholar
  68. 68.
    Eichert D (2001) PhD thesis, INPT, FranceGoogle Scholar
  69. 69.
    Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Nat Acad Sci 105:12748–12753PubMedCrossRefGoogle Scholar
  70. 70.
    Bonar LC, Rouffousse AH, Sabine WK (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  1. 1.University of ToulouseCIRIMAT, ENSIACETToulouse Cedex 04France
  2. 2.Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic SurgeryHarvard Medical School and Children’s HospitalBostonUSA

Personalised recommendations