Osteoporosis International

, Volume 20, Issue 7, pp 1141–1149

Age, gender, and race/ethnic differences in total body and subregional bone density

  • A. C. Looker
  • L. J. MeltonIII
  • T. Harris
  • L. Borrud
  • J. Shepherd
  • J. McGowan
Original Article



Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999–2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing.


Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton.


The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999–2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing.


Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm.


This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.


Cross-sectional age patterns Gender differences Race/ethnic differences Total body bone mineral density 


  1. 1.
    Melton LJ, Looker AC, Shepherd JA, O’Connor MK, Achenbach SJ, Riggs BL, Khosla S (2005) Osteoporosis assessment by whole body region vs. site-specific DXA. Osteoporos Int 16:1558–1564PubMedCrossRefGoogle Scholar
  2. 2.
    Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB (2007) Race/ethnic differences in bone mineral density in men. Osteoporos Int 18:943–953PubMedCrossRefGoogle Scholar
  3. 3.
    Fatayerji D, Cooper AM, Eastell R (1999) Total body and regional bone mineral density in men: effect of age. Osteoporos Int 10:59–65PubMedCrossRefGoogle Scholar
  4. 4.
    Morton DJ, Barrett-Connor E, Kritz-Silverstein D, Wingard DL, Schneider DL (2003) Bone mineral density in postmenopausal Caucasian, Filipina, and Hispanic women. Int J Epidemiol 32:150–156PubMedCrossRefGoogle Scholar
  5. 5.
    Taaffe DR, Villa ML, Holloway L, Marcus R (2000) Bone mineral density in older non-Hispanic Caucasian and Mexican American women: relationship to lean and fat mass. Ann Hum Biol 27:331–344PubMedCrossRefGoogle Scholar
  6. 6.
    Melton LJ, Khosla S, Achenbach SJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteoporos Int 11:977–983PubMedCrossRefGoogle Scholar
  7. 7.
    Nuti R, Martini G, Gennari C (1995) Age-related changes of whole skeleton and body composition in healthy men. Calcif Tissue Int 57:336–339PubMedCrossRefGoogle Scholar
  8. 8.
    Nuti R, Martini G (1993) Effects of age and menopause on bone density of entire skeleton in healthy and osteoporotic women. Osteoporos Int 3:59–65PubMedCrossRefGoogle Scholar
  9. 9.
    Rico H, Revilla M, Villa LF, Alvarez de Buergo M (1993) Age-related differences in total and regional bone mass: a cross-sectional study with DXA in 429 normal women. Osteoporos Int 3:154–159PubMedCrossRefGoogle Scholar
  10. 10.
    Melton LJ, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA, Robb RA, Oberg AL, Khosla S (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21:1847–1855PubMedCrossRefGoogle Scholar
  11. 11.
    Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1546PubMedCrossRefGoogle Scholar
  12. 12.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475PubMedCrossRefGoogle Scholar
  13. 13.
    Centers for Disease Control and Prevention, National Center for Health Statistics. 1999 Current National Health and Nutrition Examination Survey (NHANES). Available at http://www.cdc.gov/nchs/about/major/nhanes/currentnhanes.htm. Accessed 23 July 2007
  14. 14.
    Centers for Disease Control and Prevention, National Center for Health Statistics. Technical documentation for the 1999–2004 dual-energy x-ray absorptiometry (DXA) multiple imputation data files. February 2008. Available at http://www.cdc.gov/nchs/data/nhanes/dxa/dxa_techdoc.pdf. Accessed 10 March 2008
  15. 15.
    Centers for Disease Control and Prevention, National Center for Health Statistics (2004) Body composition procedure manual. January. Available at http://www.cdc.gov/nchs/data/nhanes03_04/bc.pdf. Accessed 10 March 2008
  16. 16.
    National Center for Health Statistics. Najjar MF, Rowland M (1987) Anthropometric reference data and prevalence of overweight, United States 1976–80. Vital and health statistics. Series 11, No. 238. DHHS Pub. No. (PHS) 87-1688, Oct. Public Health service. U.S. Government Printing Office, Washington. Available at http://www.cdc.gov/nchs/data/series/sr_11/sr11_238.pdf. Accessed 9 Feb 2008
  17. 17.
    Centers for Disease Control and Prevention, National Center for Health Statistics (2004) Anthropometry procedure manual. January. Available at http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/BM.pdf. Accessed 10 March 2008
  18. 18.
    Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women. Results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822PubMedCrossRefGoogle Scholar
  19. 19.
    Looker AC, Wahner JW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489PubMedCrossRefGoogle Scholar
  20. 20.
    Nelson DA, Jacobsen G, Barondess DA et al (1995) Ethnic differences in regional bone density, hip axis length, and lifestyle variables among healthy black and white men. J Bone Miner Res 10:782–787PubMedCrossRefGoogle Scholar
  21. 21.
    Baron J, Barret J, Berger M, Centers for Disease Control (1996) Incidence and costs to Medicare of fractures among Medicare beneficiaries aged greater than 65 years—United States, July 1991–June 1992. MMWR 45:877–883Google Scholar
  22. 22.
    Melton LJ, Khosla S, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Cross-sectional versus longitudinal evaluation of bone loss in men and women. Osteoporos Int 11:592–599PubMedCrossRefGoogle Scholar
  23. 23.
    Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112PubMedCrossRefGoogle Scholar
  24. 24.
    Cauley JA, Lui LY, Stone KL, Hillier TA, Zmuda JM, Hochberg M, Beck TJ, Ensrud KE (2005) Longitudinal study of changes in hip bone mineral density in Caucasian and African-American women. J Am Geriatr Soc 53:183–189PubMedCrossRefGoogle Scholar
  25. 25.
    Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC (2005) Racial differences in rate of decline in bone mass in older men: the Baltimore men’s osteoporosis study. J Bone Miner Res 20:1228–1234PubMedCrossRefGoogle Scholar
  26. 26.
    Luckey MM, Wallenstein S, Lapinski R, Meier DE (1996) A prospective study of bone loss in African-American and white women—a clinical research center study. J Clin Endocrinol Metab 81:2948–2956PubMedCrossRefGoogle Scholar
  27. 27.
    McDowell MA, Fryar CD, Hirsch R, Ogden C (2005) Anthropometric data for children and adults: US population 1999–2002. Advance data from vital and health statistics no. 361. National Center for Health Statistics. Available at http://www.cdc.gov/nchs/data/ad/ad361.pdf. Accessed 8 February 2008
  28. 28.
    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40:181–188PubMedGoogle Scholar
  29. 29.
    LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164PubMedGoogle Scholar
  30. 30.
    Visser M, Pahor M, Tylavsky F, Kritchevsky SB, Cauley JA, Newman AB, Blunt BA, Harris TB (2003) One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol 94:2368–2374PubMedCrossRefGoogle Scholar
  31. 31.
    Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326PubMedGoogle Scholar
  32. 32.
    Gallagher D, Ruts E, Visser M, Heshka S, Baumgartner RN, Wang J, Pierson RN, Pi-Sunyer FX, Heymsfield SB (2000) Weight stability masks sarcopenia in elderly men and women. Am J Physiol Endocrinol Metab 279:E366–E375PubMedGoogle Scholar
  33. 33.
    Ishiguro N, Kanchisa H, Miyatani M, Masuo Y, Fukunaga T (2006) Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume. J Appl Physiol 100:572–578PubMedCrossRefGoogle Scholar
  34. 34.
    Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202PubMedCrossRefGoogle Scholar
  35. 35.
    Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRefGoogle Scholar
  36. 36.
    Zimmerman SI, Girman CJ, Buie VC, Chander J, Hawkes W, Martin A, Holder L, Hebel JR, Sloane PD, Magaziner J (1999) The prevalence of osteoporosis in nursing home residents. Osteoporos Int 9:151–157PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2008

Authors and Affiliations

  • A. C. Looker
    • 1
  • L. J. MeltonIII
    • 2
  • T. Harris
    • 3
  • L. Borrud
    • 1
  • J. Shepherd
    • 4
  • J. McGowan
    • 5
  1. 1.National Center for Health StatisticsCenters for Disease Control and PreventionHyattsvilleUSA
  2. 2.Division of EpidemiologyCollege of Medicine, Mayo ClinicRochesterUSA
  3. 3.Epidemiology, Demography and Biometry ProgramNational Institute on AgingBethesdaUSA
  4. 4.Department of RadiologyUniversity of California San FranciscoSan FranciscoUSA
  5. 5.Division of Musculoskeletal DiseasesNational Institute of Musculoskeletal and Skin DiseasesBethesdaUSA

Personalised recommendations