Osteoporosis International

, Volume 20, Issue 8, pp 1337–1346

A reference database for the Stratec XCT-2000 peripheral quantitative computed tomography (pQCT) scanner in healthy children and young adults aged 6–19 years

  • R. L. Ashby
  • K. A. Ward
  • S. A. Roberts
  • L. Edwards
  • M. Z. Mughal
  • J. E. Adams
Original Article

Abstract

Summary

We have produced paediatric reference data for forearm sites using the Stratec XCT-2000 peripheral quantitative computed tomography scanner. These data are intended for clinical and research use and will assist in the interpretation of bone mineral density and bone geometric parameters at the distal and mid-shaft radius in children and young adults aged between 6–19 years.

Introduction

Peripheral quantitative computed tomography (pQCT) provides measurements of bone mineral content (BMC), density (BMD) and bone geometry. There is a lack of reference data available for the interpretation of pQCT measurements in children and young adults. The aim of this study was to provide reference data at the distal and mid-shaft radius.

Methods

pQCT was used to measure the 4% and 50% sites of the non-dominant radius in a cohort of healthy white Caucasian children and young adults aged between 5 and 25 years. The lambda, mu, sigma (LMS) technique was used to produce gender-specific reference centile curves and LMS tables for calculating individual standard deviations scores.

Results

The study population consisted of 629 participants (380 males). Reference centile curves were produced; total and trabecular BMD for age (distal radius) and for age and height, bone area (distal and mid-shaft radius), cortical area, cortical thickness, BMC, axial moment of inertia, stress–strain index and muscle area (mid-shaft radius).

Conclusions

We present gender-specific databases for the assessment of the distal and mid-shaft radius by pQCT. These data can be used as control data for research studies and allow the clinical interpretation of pQCT measurements in children and young adults by age and height.

Keywords

Adolescent Bone density Bone development Child Reference values Tomography X-ray computed 

Supplementary material

198_2008_800_MOESM1_ESM.doc (154 kb)
ESM 1(153 KB DOC)
198_2008_800_MOESM2_ESM.pdf (6 mb)
ESM 2(6 MB PDF)

References

  1. 1.
    Binkley TL, Specker BL, Wittig TA (2002) Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom 5:343–353PubMedCrossRefGoogle Scholar
  2. 2.
    Fujita T, Fujii Y, Goto B (1999) Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int 64:34–39PubMedCrossRefGoogle Scholar
  3. 3.
    Macdonald HM, Kontulainen SA, Mackelvie-O’Brien KJ, Petit MA, Janssen P, Khan KM, McKay HA (2005) Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study. Bone 36:1003–1011PubMedCrossRefGoogle Scholar
  4. 4.
    Moyer-Mileur L, Xie B, Ball S, Bainbridge C, Stadler D, Jee WS (2001) Predictors of bone mass by peripheral quantitative computed tomography in early adolescent girls. J Clin Densitom 4:313–323PubMedCrossRefGoogle Scholar
  5. 5.
    Neu CM, Manz F, Rauch F, Merkel A, Schoenau E (2001) Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:227–232PubMedCrossRefGoogle Scholar
  6. 6.
    Neu CM, Rauch F, Manz F, Schoenau E (2001) Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int 12:538–547PubMedCrossRefGoogle Scholar
  7. 7.
    Rauch F, Neu C, Manz F, Schoenau E (2001) The development of metaphyseal cortex—implications for distal radius fractures during growth. J Bone Miner Res 16:1547–1555PubMedCrossRefGoogle Scholar
  8. 8.
    Rauch F, Schoenau E (2005) Peripheral quantitative computed tomography of the distal radius in young subjects—new reference data and interpretation of results. J Musculoskelet Neuronal Interact 5:119–126PubMedGoogle Scholar
  9. 9.
    Schoenau E, Neu CM, Rauch F, Manz F (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Q, Alen M, Nicholson P, Lyytikainen A, Suuriniemi M, Helkala E, Suominen H, Cheng S (2005) Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J Bone Miner Res 20:954–961PubMedCrossRefGoogle Scholar
  11. 11.
    Bechtold S, Ripperger P, Bonfig W, Pozza RD, Haefner R, Schwarz HP (2005) Growth hormone changes bone geometry and body composition in patients with juvenile idiopathic arthritis requiring glucocorticoid treatment: a controlled study using peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:3168–3173PubMedCrossRefGoogle Scholar
  12. 12.
    Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B (2005) Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr 147:791–796PubMedCrossRefGoogle Scholar
  13. 13.
    Brennan BM, Mughal Z, Roberts SA, Ward K, Shalet SM, Eden TO, Will AM, Stevens RF, Adams JE (2005) Bone mineral density in childhood survivors of acute lymphoblastic leukemia treated without cranial irradiation. J Clin Endocrinol Metab 90:689–694PubMedCrossRefGoogle Scholar
  14. 14.
    Heap J, Murray MA, Miller SC, Jalili T, Moyer-Mileur LJ (2004) Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr 144:56–62PubMedCrossRefGoogle Scholar
  15. 15.
    Moyer-Mileur LJ, Dixon SB, Quick JL, Askew EW, Murray MA (2004) Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 145:662–669PubMedCrossRefGoogle Scholar
  16. 16.
    Quick JL, Ward KA, Adams JE, Mughal MZ (2006) Cortical bone geometry in asthmatic children. Arch Dis Child 91:346–348PubMedCrossRefGoogle Scholar
  17. 17.
    Rauch F, Land C, Cornibert S, Schoenau E, Glorieux FH (2005) High and low density in the same bone: a study on children and adolescents with mild osteogenesis imperfecta. Bone 37:634–641PubMedCrossRefGoogle Scholar
  18. 18.
    Reilly SM, Hambleton G, Adams JE, Mughal MZ (2001) Bone density in asthmatic children treated with inhaled corticosteroids. Arch Dis Child 84:183–184PubMedCrossRefGoogle Scholar
  19. 19.
    Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE (2004) Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum 50:1277–1285PubMedCrossRefGoogle Scholar
  20. 20.
    Schwahn B, Rauch F, Wendel U, Schonau E (2002) Low bone mass in glycogen storage disease type 1 is associated with reduced muscle force and poor metabolic control. J Pediatr 141:350–356PubMedCrossRefGoogle Scholar
  21. 21.
    Schweizer R, Martin DD, Schwarze CP, Binder G, Georgiadou A, Ihle J, Ranke MB (2003) Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency, but initially decreases during GH replacement due to early bone remodeling. J Clin Endocrinol Metab 88:5266–5272PubMedCrossRefGoogle Scholar
  22. 22.
    Engelke K, Gluer CC (2006) Quality and performance measures in bone densitometry: part 1: errors and diagnosis. Osteoporos Int 17:1283–1292PubMedCrossRefGoogle Scholar
  23. 23.
    Gilsanz V (1998) Bone density in children: a review of the available techniques and indications. Eur J Radiol 26:177–182PubMedCrossRefGoogle Scholar
  24. 24.
    Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101PubMedCrossRefGoogle Scholar
  25. 25.
    Schiessl H, Ferretti J, Tysarczyk-Niemeyer G, Willnecker J (1996) Noninvasive bone strength index as analyzed by peripheral computed tomography (pQCT). In: Schoenau E (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier Science B.V., Amsterdam, pp 141–146Google Scholar
  26. 26.
    Burr DB, Turner CH (2003) Biomechanics of bone. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. The American Society for Bone and Mineral Research, Philadelphia, pp 58–64Google Scholar
  27. 27.
    National Osteoporosis Society (2004) A practical guide to bone densitometry in children. Camerton, Bath, UKGoogle Scholar
  28. 28.
    Watson SJ, Jones AL, Oatway WB, Hughes JS (2005) Ionising radiation exposure of the UK Population: 2005 review. Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division, Chilton, Didcot, Oxfordshire, UKGoogle Scholar
  29. 29.
    Lettgen B, Neudorf U, Hosse R, Peters S, Reiners C (1996) Bone density in children and adolescents with rheumatic diseases. Preliminary results of selective measurement of trabecular and cortical bone using peripheral computerized tomography. Klin Padiatr 208:114–117PubMedCrossRefGoogle Scholar
  30. 30.
    Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, Moyer-Mileur L, Shepherd J, Specker B, Ward K, Hans D (2008) Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:59–74PubMedCrossRefGoogle Scholar
  31. 31.
    Moyer-Mileur LJ, Quick JL, Murray MA (2008) Peripheral quantitative computed tomography of the tibia: pediatric reference values. J Clin Densitom 11:283–294PubMedCrossRefGoogle Scholar
  32. 32.
    Ward KA, Ashby RL, Roberts SA, Adams JE, Zulf Mughal M (2007) UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child 92:53–59PubMedCrossRefGoogle Scholar
  33. 33.
    Phillimore P, Beattie A, Townsend P (1994) Widening inequality of health in northern England, 1981–91. BMJ 308:1125–1128PubMedGoogle Scholar
  34. 34.
    Census Dissemination Unit (2001) Census Aggregate Outputs [Online] Available: http://www.census.ac.uk/cdu/2001/ [Accessed August 2005]
  35. 35.
    Cole TJ, Freeman JV, Preece MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73:25–29PubMedCrossRefGoogle Scholar
  36. 36.
    Freeman JV, Cole TJ, Chinn S, Jones PR, White EM, Preece MA (1995) Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child 73:17–24PubMedCrossRefGoogle Scholar
  37. 37.
    Stratec Medizintechnik GmbH (2004) XCT 2000 Manual Software Version 5.50Google Scholar
  38. 38.
    Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319PubMedCrossRefGoogle Scholar
  39. 39.
    Ashby RL (2006) Growth and development of the skeleton in normal children. Unpublished PhD thesis, The University of ManchesterGoogle Scholar
  40. 40.
    Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC Jr (1994) Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr 125:201–207PubMedCrossRefGoogle Scholar
  41. 41.
    Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS (2004) Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 34:1044–1052PubMedCrossRefGoogle Scholar
  42. 42.
    Ward KA, Adams JE, Hangartner TN (2005) Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography. Calcif Tissue Int 77:275–280PubMedCrossRefGoogle Scholar
  43. 43.
    van Staa TP, Bishop N, Leufkens HG, Cooper C (2004) Are inhaled corticosteroids associated with an increased risk of fracture in children? Osteoporos Int 15:785–791PubMedCrossRefGoogle Scholar
  44. 44.
    Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352PubMedCrossRefGoogle Scholar
  45. 45.
    Wilhelm G, Felsenberg D, Bogusch G, Willnecker J, Thaten J, Gummert P (1999) Biomechanical examinations for validation of the bone strength strain index SSI, calculated by peripheral quantitative computed tomography. In: Lyritis GP (ed) Musculoskeletal interactions II. Hylonome, Athens, pp 105–108Google Scholar
  46. 46.
    Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE (1999) Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65:447–453PubMedCrossRefGoogle Scholar
  47. 47.
    Di Leo C, Tarolo GL, Bagni B, Bestetti A, Tagliabue L, Pietrogrande L, Pepe L (2002) Peripheral quantitative Computed Tomography (PQCT) in the evaluation of bone geometry, biomechanics and mineral density in postmenopausal women. Radiol Med (Torino) 103:233–241Google Scholar
  48. 48.
    Fricke O, Sumnik Z, Tutlewski B, Stabrey A, Remer T, Schoenau E (2008) Local body composition is associated with gender differences of bone development at the forearm in puberty. Horm Res 70:105–111PubMedCrossRefGoogle Scholar
  49. 49.
    Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H (2006) Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39:598–608PubMedCrossRefGoogle Scholar
  50. 50.
    Roth J, Linge M, Tzaribachev N, Schweizer R, Kuemmerle-Deschner J (2007) Musculoskeletal abnormalities in juvenile idiopathic arthritis—a 4-year longitudinal study. Rheumatology (Oxford) 46:1180–1184CrossRefGoogle Scholar
  51. 51.
    Ward KA, Roberts SA, Adams JE, Mughal MZ (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36:1012–1018PubMedCrossRefGoogle Scholar
  52. 52.
    Marjanovic E, Ward K, Adams J (2008) The impact of accurate positioning on measurements made by peripheral QCT in the distal radius. Osteoporos Int [Epub ahead of print], Nov 4Google Scholar
  53. 53.
    Rauch F, Tutlewski B, Fricke O, Rieger-Wettengl G, Schauseil-Zipf U, Herkenrath P, Neu CM, Schoenau E (2001) Analysis of cancellous bone turnover by multiple slice analysis at distal radius: a study using peripheral quantitative computed tomography. J Clin Densitom 4:257–262PubMedCrossRefGoogle Scholar
  54. 54.
    Rauch F, Travers R, Munns C, Glorieux FH (2004) Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res 19:1191–1193PubMedCrossRefGoogle Scholar
  55. 55.
    Davies JH, Gregory JW (2003) Radiographic long bone appearance in a child administered cyclical pamidronate. Arch Dis Child 88:854PubMedCrossRefGoogle Scholar
  56. 56.
    Smith SA, Norris BJ (2004) Changes in the body size of UK and US children over the past three decades. Ergonomics 47:1195–1207PubMedCrossRefGoogle Scholar
  57. 57.
    Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMedCrossRefGoogle Scholar
  58. 58.
    Molgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15PubMedCrossRefGoogle Scholar
  59. 59.
    Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385PubMedCrossRefGoogle Scholar
  60. 60.
    Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190PubMedCrossRefGoogle Scholar
  61. 61.
    Rauch F (2006) Material matters: a mechanostat-based perspective on bone development in osteogenesis imperfecta and hypophosphatemic rickets. J Musculoskelet Neuronal Interact 6:142–146PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2009

Authors and Affiliations

  • R. L. Ashby
    • 1
  • K. A. Ward
    • 1
  • S. A. Roberts
    • 2
  • L. Edwards
    • 1
    • 3
  • M. Z. Mughal
    • 4
  • J. E. Adams
    • 1
    • 5
  1. 1.Clinical Radiology, Imaging Science & Cancer Studies, Stopford BuildingUniversity of ManchesterManchesterUK
  2. 2.Biostatistics Group, School of Epidemiology and Health Sciences, Stopford BuildingUniversity of ManchesterManchesterUK
  3. 3.Faculty of Medicine, School of Health SciencesUniversity of LiverpoolLiverpoolUK
  4. 4.Department of Paediatric Medicine, Saint Mary’s Hospital for Women & ChildrenCentral Manchester & Manchester Children’s Hospitals NHS TrustManchesterUK
  5. 5.Clinical RadiologyManchester Royal InfirmaryManchesterUK

Personalised recommendations