Advertisement

Osteoporosis International

, Volume 20, Issue 6, pp 923–933 | Cite as

Poor glycemic control is associated with low BMD detected in premenopausal women with type 1 diabetes

  • K. K. DanielsonEmail author
  • M. E. Elliott
  • T. LeCaire
  • N. Binkley
  • M. Palta
Original Article

Abstract

Summary

The etiology of bone fragility in individuals with type 1 diabetes is unknown. This study demonstrated that bone turnover favors resorption and that poor glycemic control is associated with low bone mineral density (BMD) and low bone turnover, in premenopausal women with type 1 diabetes. The results could inform future interventions.

Introduction

Low BMD and fracture may be complications of type 1 diabetes. We sought to determine the roles of bone turnover and glycemic control in the etiology of low BMD.

Methods

Premenopausal women from the Wisconsin Diabetes Registry Study and matched controls were compared (n = 75 pairs). Heel and forearm BMD were measured, and hip and spine BMD were measured in a subset. Markers of bone formation (osteocalcin) and resorption (NTx), and glycemic control (HbA1c) were determined.

Results

Age ranged from 18 to 50 years with a mean of 28, and 97% were Non-Hispanic white. Among women with diabetes, mean disease duration was 16 years and current HbA1c was 8%. Compared to controls, women with diabetes had a high prevalence of previous fracture (37% vs. 24%) and low BMD for age (heel or forearm: 49% vs. 31%), low heel and forearm BMD, and low osteocalcin levels. Levels of NTx were similar, suggesting uncoupled turnover favoring resorption. Poor glycemic control was associated with low BMD at all bone sites except the spine, and with low osteocalcin and NTx levels.

Conclusions

Optimal glycemic control may prevent low BMD and altered bone turnover in type 1 diabetes, and decrease fracture risk.

Keywords

Bone mineral density Bone turnover Diabetes mellitus Type 1 Glycemic control Premenopausal 

Notes

Funding

American Diabetes Association grant 1-05-CR-35, National Institutes of Health grant DK036904. We gratefully acknowledge the study participants and staff of the Wisconsin Women & Diabetes Study, Wisconsin Diabetes Registry Study, and Osteoporosis Clinic Research Program.

Conflicts of interest

None.

References

  1. 1.
    Brown SA, Sharpless JL (2004) Osteoporosis: an under-appreciated complication of diabetes. Clinical Diabetes 22:10–20CrossRefGoogle Scholar
  2. 2.
    Janghorbani M, Van Dam R, Willett W et al (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Amer J Epidemiol 166:495–505CrossRefGoogle Scholar
  3. 3.
    DIAMOND Project Group (2006) Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet Med 23:857–866CrossRefGoogle Scholar
  4. 4.
    Matsushima M, LaPorte RE, Maruyama M et al (1997) Geographic variation in mortality among individuals with youth-onset diabetes mellitus across the world. DERI Mortality Study Group. Diabetes Epidemiology Research International. Diabetologia 40:212–216PubMedCrossRefGoogle Scholar
  5. 5.
    Carnevale V, Romagnoli E, D'Erasmo E (2004) Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev 20:196–204PubMedCrossRefGoogle Scholar
  6. 6.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRefGoogle Scholar
  7. 7.
    Hofbauer LC, Brueck CC, Singh SK et al (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328PubMedCrossRefGoogle Scholar
  8. 8.
    Gallacher SJ, Fenner JA, Fisher BM et al (1993) An evaluation of bone density and turnover in premenopausal women with type 1 diabetes mellitus. Diabet Med 10:129–133PubMedCrossRefGoogle Scholar
  9. 9.
    Gunczler P, Lanes R, Paz-Martinez V et al (1998) Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally. J Pediatr Endocrinol 11:413–419Google Scholar
  10. 10.
    Liu EY, Wactawski-Wende J, Donahue RP et al (2003) Does low bone mineral density start in post-teenage years in women with type 1 diabetes? Diabetes Care 26:2365–2369PubMedCrossRefGoogle Scholar
  11. 11.
    Ponder SW, McCormick DP, Fawcett HD et al (1992) Bone mineral density of the lumbar vertebrae in children and adolescents with insulin-dependent diabetes mellitus. J Pediatr 120:541–545PubMedCrossRefGoogle Scholar
  12. 12.
    Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8:399–403PubMedCrossRefGoogle Scholar
  13. 13.
    Moyer-Mileur LJ, Dixon SB, Quick JL et al (2004) Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 145:662–669PubMedCrossRefGoogle Scholar
  14. 14.
    Strotmeyer ES, Cauley JA, Orchard TJ et al (2006) Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 29:306–311PubMedCrossRefGoogle Scholar
  15. 15.
    Pascual J, Argente J, Lopez MB et al (1998) Bone mineral density in children and adolescents with diabetes mellitus type 1 of recent onset. Calcif Tissue Int 62:31–35PubMedCrossRefGoogle Scholar
  16. 16.
    Valerio G, del Puente A, Esposito-Del Puente A et al (2002) The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus. Horm Res 58:266–272PubMedCrossRefGoogle Scholar
  17. 17.
    Tuominen JT, Impivaara O, Puukka P et al (1999) Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22:1196–1200PubMedCrossRefGoogle Scholar
  18. 18.
    Palta M, LeCaire T, Daniels K et al (1997) Risk factors for hospitalization in a cohort with type 1 diabetes. Wisconsin Diabetes Registry. Amer J Epidemiol 146:627–636Google Scholar
  19. 19.
    World Health Organization (ed) (1985) Diabetes Mellitus: Report of a WHO Study Group. Technical Report Series 727. WHO, GenevaGoogle Scholar
  20. 20.
    Prince R, Sipos A, Hossain A et al (2005) Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20:1507–1513PubMedCrossRefGoogle Scholar
  21. 21.
    Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288:1889–1897PubMedCrossRefGoogle Scholar
  22. 22.
    Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures: the Study of Osteoporotic Fractures Research Group. Lancet 341:72–75PubMedCrossRefGoogle Scholar
  23. 23.
    Binkley N, Bilezikian JP, Kendler DL et al (2007) Summary of the international society for clinical densitometry 2005 position development conference. J Bone Miner Res 22:643–645PubMedCrossRefGoogle Scholar
  24. 24.
    Eastell R, Robins SP, Colwell T et al (1993) Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporos Int 3:255–260PubMedCrossRefGoogle Scholar
  25. 25.
    The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRefGoogle Scholar
  26. 26.
    Duck SC, Lee M, D'Alessio D (1990) 24–42 month stability of internal blood standards for glycated hemoglobin analysis. Diabetes Res Clin Pract 9:195–199PubMedCrossRefGoogle Scholar
  27. 27.
    Willett WC, Sampson L, Stampfer MJ et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Amer J Epidemiol 122:51–65Google Scholar
  28. 28.
    Sallis JF, Haskell WL, Wood PD et al (1985) Physical activity assessment methodology in the Five-City Project. Amer J Epidemiol 121:91–106Google Scholar
  29. 29.
    Gorai I, Chaki O, Nakayama M et al (1995) Urinary biochemical markers for bone resorption during the menstrual cycle. Calcif Tissue Int 57:100–104PubMedCrossRefGoogle Scholar
  30. 30.
    Pasco JA, Henry MJ, Kotowicz MA et al (2004) Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J Bone Miner Res 19:752–758PubMedCrossRefGoogle Scholar
  31. 31.
    Clowes JA, Khosla S, Eastell R (2005) Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res 20:1497–1506PubMedCrossRefGoogle Scholar
  32. 32.
    Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379PubMedCrossRefGoogle Scholar
  33. 33.
    Looker AC, Bauer DC, Chesnut CH III et al (2000) Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos Int 11:467–480PubMedCrossRefGoogle Scholar
  34. 34.
    Garnero P, Hausherr E, Chapuy M-C et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res 11:1531–1538PubMedCrossRefGoogle Scholar
  35. 35.
    Verhaeghe J, van Herck E, Visser WJ et al (1990) Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes 39:477–482PubMedCrossRefGoogle Scholar
  36. 36.
    Ward DT, Yau SK, Mee AP et al (2001) Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. J Am Soc Nephrol 12:779–790PubMedGoogle Scholar
  37. 37.
    Bouillon R (1991) Diabetic bone disease. Calcif Tissue Int 49:155–160PubMedCrossRefGoogle Scholar
  38. 38.
    Nathan DM, Cleary PA, Backlund JY et al Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefGoogle Scholar
  39. 39.
    Katayama Y, Akatsu T, Kado TS et al (1995) Glycated bone collagen in diabetic rats and its effects on osteoblast functions (abstract 535). Bone 16:219SGoogle Scholar
  40. 40.
    Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedCrossRefGoogle Scholar
  41. 41.
    Rozadilla A, Nolla JM, Montana E et al (2000) Bone mineral density in patients with type 1 diabetes mellitus. Joint Bone Spine 67:215–218PubMedGoogle Scholar
  42. 42.
    Pocock NA, Eisman JA, Hopper JL et al (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest 80:706–710PubMedCrossRefGoogle Scholar
  43. 43.
    Sowers MR, Galuska DA (1993) Epidemiology of bone mass in premenopausal women. Epidemiol Rev 15:374–398PubMedGoogle Scholar
  44. 44.
    Henry YM, Fatayerji D, Eastell R (2004) Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int 15:263–273PubMedCrossRefGoogle Scholar
  45. 45.
    U.S. Preventive Services Task Force (2002) Screening for osteoporosis in postmenopausal women: recommendations and rationale. Ann Intern Med 137:526–528Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2008

Authors and Affiliations

  • K. K. Danielson
    • 1
    • 6
    Email author
  • M. E. Elliott
    • 2
  • T. LeCaire
    • 3
  • N. Binkley
    • 4
  • M. Palta
    • 3
    • 5
  1. 1.Institute for Endocrine Discovery and Clinical CareUniversity of ChicagoChicagoUSA
  2. 2.Pharmacy Practice DivisionUniversity of Wisconsin—MadisonMadisonUSA
  3. 3.Department of Population Health SciencesUniversity of Wisconsin—MadisonMadisonUSA
  4. 4.Department of MedicineUniversity of Wisconsin—MadisonMadisonUSA
  5. 5.Department of Biostatistics and Medical InformaticsUniversity of Wisconsin—MadisonMadisonUSA
  6. 6.ChicagoUSA

Personalised recommendations