Osteoporosis International

, Volume 20, Issue 3, pp 445–453 | Cite as

Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction

  • S. L. Manske
  • T. Liu-Ambrose
  • D. M. L. Cooper
  • S. Kontulainen
  • P. Guy
  • B. B. Forster
  • H. A. McKay
Original Article

Abstract

Summary

We examined the contributions of femoral neck cortical and trabecular bone to proximal femur failure load. We found that trabecular bone mineral density explained a significant proportion of variance in failure load after accounting for total bone size and cortical bone mineral content or cortical area.

Introduction

The relative contribution of femoral neck trabecular and cortical bone to proximal femur failure load is unclear.

Objectives

Our primary objective was to determine whether trabecular bone mineral density (TbBMD) contributes to proximal femur failure load after accounting for total bone size and cortical bone content. Our secondary objective was to describe regional differences in the relationship among cortical bone, trabecular bone, and failure load within a cross-section of the femoral neck.

Materials and methods

We imaged 36 human cadaveric proximal femora using quantitative computed tomography (QCT). We report total bone area (ToA), cortical area (CoA), cortical bone mineral content (CoBMC), and TbBMD measured in the femoral neck cross-section and eight 45° regions. The femora were loaded to failure.

Results and observations

Trabecular bone mineral density explained a significant proportion of variance in failure load after accounting for ToA and then either CoBMC or CoA respectively. CoBMC contributed significantly to failure load in all regions of the femoral neck except the posterior region. TbBMD contributed significantly to failure load in all regions of the femoral neck except the inferoanterior, superoposterior, and the posterior regions.

Conclusion

Both cortical and trabecular bone make significant contributions to failure load in ex vivo measures of bone strength.

Keywords

Bone strength Cortical bone Femoral neck Proximal femur QCT Trabecular bone 

References

  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRefGoogle Scholar
  2. 2.
    Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15:897–902PubMedCrossRefGoogle Scholar
  3. 3.
    Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864PubMedCrossRefGoogle Scholar
  4. 4.
    Lang TF, Keyak JH, Heitz MW et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRefGoogle Scholar
  5. 5.
    Mayhew PM, Thomas CD, Clement JG et al (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135PubMedCrossRefGoogle Scholar
  6. 6.
    Turner CH (2005) The biomechanics of hip fracture. Lancet 366:98PubMedCrossRefGoogle Scholar
  7. 7.
    Bouxsein ML, Fajardo RJ (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523–1524PubMedCrossRefGoogle Scholar
  8. 8.
    Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261PubMedCrossRefGoogle Scholar
  9. 9.
    Bell KL, Loveridge N, Power J et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119PubMedCrossRefGoogle Scholar
  10. 10.
    Manske SL, Liu-Ambrose T, de Bakker PM et al (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545PubMedCrossRefGoogle Scholar
  11. 11.
    Crabtree N, Loveridge N, Parker M et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328PubMedCrossRefGoogle Scholar
  12. 12.
    Kuiper JW, Van Kuijk C, Grashuis JL (1997) Distribution of trabecular and cortical bone related to geometry. A quantitative computed tomography study of the femoral neck. Invest Radiol 32:83–89PubMedCrossRefGoogle Scholar
  13. 13.
    Hologic. Hologic QDR 4500 User’s Guide. Hologic, Inc, Waltham, MAGoogle Scholar
  14. 14.
    Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg 77:387–395PubMedGoogle Scholar
  15. 15.
    Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216PubMedCrossRefGoogle Scholar
  16. 16.
    Lochmüller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18:906–912PubMedCrossRefGoogle Scholar
  17. 17.
    Eckstein F, Wunderer C, Boehm H et al (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19:379–385PubMedCrossRefGoogle Scholar
  18. 18.
    Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231–235PubMedGoogle Scholar
  19. 19.
    Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113:366–374PubMedCrossRefGoogle Scholar
  20. 20.
    Robinovitch SN, Hayes WC, McMahon TA (1995) Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J Biomech Eng 117:409–413PubMedCrossRefGoogle Scholar
  21. 21.
    Zuckerman JD (1996) Hip fracture. N Engl J Med 334:1519–1525PubMedCrossRefGoogle Scholar
  22. 22.
    Fox J (1991) Regression diagnostics. Sage, Newbury ParkGoogle Scholar
  23. 23.
    Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64PubMedCrossRefGoogle Scholar
  24. 24.
    Cooper DML, Thomas CDL, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–965PubMedCrossRefGoogle Scholar
  25. 25.
    de Bakker PM, Manske SL, Ebacher V, Oxland TR, Guy P, Cripton PA. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high speed video of simulated fractures (in preparation)Google Scholar
  26. 26.
    Robinovitch SN, Hayes WC, McMahon TA (1997) Distribution of contact force during impact to the hip. Ann Biomed Eng 25:499–508PubMedCrossRefGoogle Scholar
  27. 27.
    Sandler R, Robinovitch S (2001) An analysis of the effect of lower extremity strength on impact severity during a backward fall. J Biomech Eng 123:590–598PubMedCrossRefGoogle Scholar
  28. 28.
    Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD (2007) Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 22:825–831PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2008

Authors and Affiliations

  • S. L. Manske
    • 1
    • 2
  • T. Liu-Ambrose
    • 1
    • 3
  • D. M. L. Cooper
    • 4
  • S. Kontulainen
    • 5
  • P. Guy
    • 1
  • B. B. Forster
    • 6
  • H. A. McKay
    • 1
    • 7
  1. 1.UBC Department of Orthopaedics, Centre for Hip Health and Musculoskeletal ResearchVancouver Coastal Health Research InstituteVancouverCanada
  2. 2.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  3. 3.Department of Physical TherapyUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Anatomy and Cell BiologyUniversity of SaskatchewanSaskatoonCanada
  5. 5.College of KinesiologyUniversity of SaskatchewanSaskatoonCanada
  6. 6.Department of RadiologyUniversity of British ColumbiaVancouverCanada
  7. 7.Department of Family PracticeUniversity of British ColumbiaVancouverCanada

Personalised recommendations