Osteoporosis International

, Volume 19, Issue 11, pp 1549–1556 | Cite as

Renal function and rate of hip bone loss in older men: the Osteoporotic Fractures in Men Study

  • A. Ishani
  • M. Paudel
  • B. C. Taylor
  • E. Barrett-Connor
  • S. Jamal
  • M. Canales
  • M. Steffes
  • H. A. Fink
  • E. Orwoll
  • S. R. Cummings
  • K. E. Ensrud
  • for the Osteoporotic Fractures in Men (MrOS) Study Group
Original Paper



Older men with reduced renal function are at increased risk of hip bone loss. Given the robustness of this association across different measures and a growing body of literature, our findings indicate that clinicians should take into account renal function when evaluating older men for osteoporosis risk and bone loss. Future randomized controlled trials should test whether interventions in this high risk population are effective in preventing bone loss and decreasing fracture incidence.


Studies examining whether kidney impairment, not requiring dialysis, is associated with osteoporosis have reported conflicting results.


We tested the hypothesis that reduced renal function in older men as manifested by higher concentrations of cystatin C or lower levels of estimated glomerular filtration rate (eGFR) is associated with higher rates of bone loss. We measured serum cystatin C, serum creatinine and total hip bone mineral density (BMD) at baseline in a cohort of 404 older men enrolled in the Osteoporotic Fractures in Men (MrOS) Study and followed them prospectively for an average of 4.4 years for changes in BMD. Associations between renal function and change in hip BMD were examined using linear regression.


In multivariable analysis, the mean rate of decline in total hip BMD showed an increase in magnitude with higher cystatin C concentration (mean annualized percent change −0.29, −0.34, −0.37 and −0.65% for quartiles 1 to 4; p for trend=0.004). Similarly, adjusted rates of hip bone loss were higher among men with lower eGFR as defined by the modification of diet in renal disease formula (mean annualized percent change −0.58, −0.39, −0.37, and −0.31 for quartiles 1 to 4; p for trend=0.02), but not among men with lower eGFR as defined by the Cockcroft–Gault formula (mean annualized percent change −0.47, −0.44, −0.31 and −0.43 for quartiles 1 to 4; p for trend=0.48).


Older men with reduced renal function are at increased risk of hip bone loss. Our findings suggest that health care providers should consider renal function when evaluating older men for risk factors for bone loss and osteoporosis.


Chronic kidney disease Cystatin C Glomerular filtration rate Osteoporosis Population studies 



The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute on Aging (NIA), the National Center for Research Resources (NCRR), and NIH Roadmap for Medical Research under the following grant numbers: U01 AR45580, U01 AR45614, U01 AR45632, U01 AR45647, U01 AR45654, U01 AR45583, U01 AG18197, U01-AG027810, and UL1 RR024140.

Conflicts of interest



  1. 1.
    Stehman-Breen CO, Sherrard D, Walker A, Sadler R, Alem A, Lindberg J (1999) Racial differences in bone mineral density and bone loss among end-stage renal disease patients. Am J Kidney Dis 33:941–946CrossRefPubMedGoogle Scholar
  2. 2.
    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399CrossRefPubMedGoogle Scholar
  3. 3.
    Fontaine MA, Albert A, Dubois B, Saint-Remy A, Rorive G (2000) Fracture and bone mineral density in hemodialysis patients. Clin Nephrol 54:218–226PubMedGoogle Scholar
  4. 4.
    Jassal SK, von Muhlen D, Barrett-Connor E (2007) Measures of Renal Function, BMD, Bone Loss, and Osteoporotic Fracture in Older Adults: The Rancho Bernardo Study. J Bone Miner Res 22:203–210CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fliser D, Ritz E (2001) Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 37:79–83CrossRefPubMedGoogle Scholar
  6. 6.
    Fried LF, Shlipak MG, Stehman-Breen C, Mittalhenkle A, Seliger S, Sarnak M, Robbins J, Siscovick D, Harris TB, Newman AB, Cauley JA (2006) Kidney function predicts the rate of bone loss in older individuals: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 61:743–748CrossRefPubMedGoogle Scholar
  7. 7.
    Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K (2005) Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study–a large observational study of the determinants of fracture in older men. Contemp Clin Trials 26:569–585CrossRefPubMedGoogle Scholar
  8. 8.
    Blank JB, Cawthon PM, Carrion-Petersen ML, Harper L, Johnson JP, Mitson E, Delay RR (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials 26:557–568CrossRefPubMedGoogle Scholar
  9. 9.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41CrossRefPubMedGoogle Scholar
  10. 10.
    DuBois D, Dubois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871CrossRefGoogle Scholar
  11. 11.
    Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van LF. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with Standardized Serum Creatinine Values. Clin Chem 2007Google Scholar
  12. 12.
    Washburn RA, Ficker JL (1999) Physical Activity Scale for the Elderly (PASE): the relationship with activity measured by a portable accelerometer. J Sports Med Phys Fitness 39:336–340PubMedGoogle Scholar
  13. 13.
    Bassey EJ, Short AH (1990) A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol 60:385–390CrossRefPubMedGoogle Scholar
  14. 14.
    Berlyne GM, Ben Ari J, Kushelevsky A, Idelman A, Galinsky D, Hirsch M, Shainkin R, Yagil R, Zlotnik M (1975) The aetiology of senile osteoporosis: secondary hyperparathyroidism due to renal failure. Q J Med 44:505–521PubMedGoogle Scholar
  15. 15.
    Bianchi ML, Colantonio G, Montesano A, Trevisan C, Ortolani S, Rossi R, Buccianti G (1992) Bone mass status in different degrees of chronic renal failure. Bone 13:225–228CrossRefPubMedGoogle Scholar
  16. 16.
    Buchanan JR, Myers CA, Greer RB III (1988) Effect of declining renal function on bone density in aging women. Calcif Tissue Int 43:1–6CrossRefPubMedGoogle Scholar
  17. 17.
    Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K (1999) Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int 56:1084–1093CrossRefPubMedGoogle Scholar
  18. 18.
    Sherman SS, Tobin JD, Hollis BW, Gundberg CM, Roy TA, Plato CC (1992) Biochemical parameters associated with low bone density in healthy men and women. J Bone Miner Res 7:1123–1130CrossRefPubMedGoogle Scholar
  19. 19.
    Yendt ER, Cohanim M, Jarzylo S, Jones G, Rosenberg G (1991) Bone mass is related to creatinine clearance in normal elderly women. J Bone Miner Res 6:1043–1050CrossRefPubMedGoogle Scholar
  20. 20.
    Hsu CY, Cummings SR, McCulloch CE, Chertow GM (2002) Bone mineral density is not diminished by mild to moderate chronic renal insufficiency. Kidney Int 61:1814–1820CrossRefPubMedGoogle Scholar
  21. 21.
    Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232CrossRefPubMedGoogle Scholar
  22. 22.
    Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167:133–139CrossRefPubMedGoogle Scholar
  23. 23.
    Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286CrossRefPubMedGoogle Scholar
  24. 24.
    Pitts TO, Piraino BH, Mitro R, Chen TC, Segre GV, Greenberg A, Puschett JB (1988) Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab 67:876–881CrossRefPubMedGoogle Scholar
  25. 25.
    K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–266Google Scholar
  26. 26.
    K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42: S1–201Google Scholar
  27. 27.
    Keller CR, Odden MC, Fried LF, Newman AB, Angleman S, Green CA, Cummings SR, Harris TB, Shlipak MG (2007) Kidney function and markers of inflammation in elderly persons without chronic kidney disease: the health, aging, and body composition study. Kidney Int 71:239–244CrossRefPubMedGoogle Scholar
  28. 28.
    Menon V, Sarnak MJ, Greene T, Wang X, Pereira AA, Beck GJ, Kusek JW, Selhub J, Collins AJ, Levey AS, Shlipak MG (2006) Relationship between homocysteine and mortality in chronic kidney disease. Circulation 113:1572–1577CrossRefPubMedGoogle Scholar
  29. 29.
    Salamone LM, Whiteside T, Friberg D, Epstein RS, Kuller LH, Cauley JA (1998) Cytokine production and bone mineral density at the lumbar spine and femoral neck in premenopausal women. Calcif Tissue Int 63:466–470CrossRefPubMedGoogle Scholar
  30. 30.
    Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, Tverdal A, Tell GS, Nygard O, Vollset SE (2006) The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 136:1731S–1740SPubMedGoogle Scholar
  31. 31.
    Norlund L, Fex G, Lanke J, Von SH, Nilsson JE, Leksell H, Grubb A (1997) Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum beta 2-microglobulin/cystatin C-ratio. Scand J Clin Lab Invest 57:463–470CrossRefPubMedGoogle Scholar
  32. 32.
    Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehman-Breen C (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352:2049–2060CrossRefPubMedGoogle Scholar
  33. 33.
    Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivela SL, Irjala K (2004) Estimation of glomerular filtration rate in the elderly: a comparison of creatinine-based formulae with serum cystatin C. J Intern Med 256:70–78CrossRefPubMedGoogle Scholar
  34. 34.
    Menon V, Shlipak MG, Wang X, Coresh J, Greene T, Stevens L, Kusek JW, Beck GJ, Collins AJ, Levey AS, Sarnak MJ (2007) Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann Intern Med 147:19–27CrossRefPubMedGoogle Scholar
  35. 35.
    Odden MC, Chertow GM, Fried LF, Newman AB, Connelly S, Angleman S, Harris TB, Simonsick EM, Shlipak MG (2006) Cystatin C and measures of physical function in elderly adults: the Health, Aging, and Body Composition (HABC) Study. Am J Epidemiol 164:1180–1189CrossRefPubMedGoogle Scholar
  36. 36.
    Shlipak MG, Katz R, Sarnak MJ, Fried LF, Newman AB, Stehman-Breen C, Seliger SL, Kestenbaum B, Psaty B, Tracy RP, Siscovick DS (2006) Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann Intern Med 145:237–246CrossRefPubMedGoogle Scholar
  37. 37.
    O’Hare AM, Newman AB, Katz R, Fried LF, Stehman-Breen CO, Seliger SL, Siscovick DS, Shlipak MG (2005) Cystatin C and incident peripheral arterial disease events in the elderly: results from the Cardiovascular Health Study. Arch Intern Med 165:2666–2670CrossRefPubMedGoogle Scholar
  38. 38.
    Fried LF, Katz R, Sarnak MJ, Shlipak MG, Chaves PH, Jenny NS, Stehman-Breen C, Gillen D, Bleyer AJ, Hirsch C, Siscovick D, Newman AB (2005) Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol 16:3728–3735CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2008

Authors and Affiliations

  • A. Ishani
    • 1
    • 2
    • 9
  • M. Paudel
    • 1
  • B. C. Taylor
    • 1
    • 2
  • E. Barrett-Connor
    • 4
  • S. Jamal
    • 5
  • M. Canales
    • 2
  • M. Steffes
    • 3
  • H. A. Fink
    • 1
    • 2
    • 8
  • E. Orwoll
    • 6
  • S. R. Cummings
    • 7
  • K. E. Ensrud
    • 1
    • 2
  • for the Osteoporotic Fractures in Men (MrOS) Study Group
  1. 1.Center for Chronic Disease Outcomes ResearchVeterans Affairs Medical CenterMinneapolisUSA
  2. 2.Departments of MedicineUniversity of MinnesotaMinneapolisUSA
  3. 3.Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  4. 4.Division of Epidemiology, Department of Family and Preventative MedicineUniversity of CaliforniaSan DiegoUSA
  5. 5.Division of EndocrinologySt. Michael’s Hospital and University of TorontoTorontoCanada
  6. 6.Oregon Health Sciences UniversityPortlandUSA
  7. 7.California Pacific Medical Center Research InstituteSan FranciscoUSA
  8. 8.Geriatric Research Education and Clinical CenterVeterans Affairs Medical CenterMinneapolisUSA
  9. 9.MinneapolisUSA

Personalised recommendations