Osteoporosis International

, Volume 19, Issue 6, pp 853–893

Second meeting on bone quality, Abbaye des Vaux de Cernay, France, 19–20 June 2007: Cortical bone

Bone Quality Seminars

References

Editorial

  1. 1.
    Seeman E, Wahner HW, Offord KP et al. (1982) Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 69:1302–1309PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Seeman E (2003) Periosteal bone formation - a neglected determinant of bone strength. N Engl J Med 349(4):320–323PubMedCrossRefGoogle Scholar
  3. 3.
    Mundy GR (Fourth edition) (1999) Primer on the metabolic bone deseases and disorders of mineral metabolism. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Eswaran SK, Gupta A, Adams MF, Keaveny T. (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314PubMedCrossRefGoogle Scholar

Cortical bone composition and biomechaical implications

  1. 1.
    Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D (2007). Prediction of mechanical properties of cortical bone by Quantitative Computed Tomography. Med Eng Physics. In pressGoogle Scholar
  2. 2.
    Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X (2007). Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop ResGoogle Scholar
  3. 3.
    Augat P, Schorlemmer S (2006). The role of cortical bone and its microstructure in bone strength. Age Ageing 35(Suppl 2):ii27–ii31PubMedGoogle Scholar
  4. 4.
    Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39(6):1173–1181PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Muller M, Sutin A, Guyer R, Talmant M, Laugier P, Johnson PA (2005) Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J Acoust Soc Am 118(6):3946–3952PubMedCrossRefGoogle Scholar
  6. 6.
    Wang X, Puram S (2004) The toughness of cortical bone and its relationship with age. Ann Biomed Eng 32(1):123–135PubMedCrossRefGoogle Scholar
  7. 7.
    Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31(1):90–95PubMedCrossRefGoogle Scholar
  8. 8.
    Zioupos P (2001) Accumulation of in vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc 201(2):270–278CrossRefGoogle Scholar
  9. 9.
    Wang X, Bank RA, TeKoppele JM, Hubbard GB, Athanasiou KA, Agrawal CM (2000) Effect of collagen denaturation on the toughness of bone. Clin Orthop Relat Res (371):228–239PubMedCrossRefGoogle Scholar
  10. 10.
    Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45(2):108–116PubMedCrossRefGoogle Scholar
  11. 11.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102PubMedCrossRefGoogle Scholar
  12. 12.
    Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21(2):131–139PubMedCrossRefGoogle Scholar

Measurement of cortical bone by dual X-ray absorptiometry

  1. 1.
    Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS (2004) Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone 34:1044–1052PubMedCrossRefGoogle Scholar
  2. 2.
    Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. J Bone Miner Res 17:855–864Google Scholar
  3. 3.
    Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314PubMedCrossRefGoogle Scholar
  4. 4.
    Glüer CC, Cummings SR, Pressman A, Li J, Gluer K, Faulkner KG et al (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The study of osteoporotic fractures research group. J Bone Miner Res 9:671–677PubMedCrossRefGoogle Scholar
  5. 5.
    Ducher G, Prouteau S, Courteix D, Benhamou CL (2004)Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing J Clin Densitom 7:399–405PubMedCrossRefGoogle Scholar
  6. 6.
    Mottet JJ, Horber FF, Casez JP, Descoeudres C, Jaeger P (1996) Evidence for preservation of cortical bone mineral density in patients on continuous ambulatory peritoneal dialysis. J Bone Miner Res 11:96–104PubMedCrossRefGoogle Scholar
  7. 7.
    Winters-stone KM, Snow CM (2004) One year oral calcium supplementation maintains cortical bone density in young adult female distance runners. Int J Sport Nutr Exerc Metab 14:7–17PubMedCrossRefGoogle Scholar
  8. 8.
    Matsumoto C, Kushida K, Yamazaki K, Imose K, Inoue T (1994) Metacarpal bone mass in normal and osteoporotic Japanese women using computed X-ray densitometry. Calcif Tissue Int 55:324–329PubMedCrossRefGoogle Scholar
  9. 9.
    Sornay-Rendu E, Boutry S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433PubMedCrossRefGoogle Scholar
  10. 10.
    Bone densitometry in clinical practice – Application and interpretation. In: Bonnick SL (ed) Humana pressGoogle Scholar
  11. 11.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al (2005) Predictive value of BMD for hip and other fractures J Bone Miner Res 20:1185–1194PubMedCrossRefGoogle Scholar
  12. 12.
    Marshall D, Johnelle O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    McClung MR, Lewiecki M, Cohen S Bolognese MA, Woodson GC, Moffett AH et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831PubMedCrossRefGoogle Scholar
  14. 14.
    Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M et al (2003) Effetcs of teriparatide [recombinant human paeathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18:539–543PubMedCrossRefGoogle Scholar
  15. 15.
    Bouxsein ML, Parker RA, Greenspan SL (1999) Forearm bone mineral density cannot be used to monitor response to Alendronate therapy in postmenopausal women. Osteoporos Int 10:505–509PubMedCrossRefGoogle Scholar
  16. 16.
    De Laet CE, Van Hout BA, Burger H, Hohman A, Pols HA (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315:221–222PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Faulkner KG, Cummings SR, Black D, Palermo L, Glüer CC, Genant HK (1993) Simple measurements of femoral geometry predict hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–1217PubMedCrossRefGoogle Scholar
  18. 18.
    Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS study. J Bone Miner Res 12:1895–1902PubMedCrossRefGoogle Scholar
  19. 19.
    Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–733PubMedCrossRefGoogle Scholar
  20. 20.
    Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73PubMedCrossRefGoogle Scholar
  21. 21.
    Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M et al (1999) Structure of femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119PubMedCrossRefGoogle Scholar
  22. 22.
    Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R et al (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMedCrossRefGoogle Scholar
  23. 23.
    Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2006) Low width of tubular bones is associated with increased risk of fragility fracture in elderly men – the MINOS study. Bone 38:595–602PubMedCrossRefGoogle Scholar
  24. 24.
    Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmeopausal women. J Bone Miner Res 21:1856–1863PubMedCrossRefGoogle Scholar
  25. 25.
    Sabatier JP, Héron JPF, Petiot, JF, Sabatier N, Dronne JJ (1982) Clinical usefulness of a bone mineral measurement method on the femoral shaft. Calcif Tissue Int 34:21–28PubMedCrossRefGoogle Scholar
  26. 26.
    Sievänen H, Kannus P, Oja P, Vuori I (1994) Dual energy x-ray absorptiometry is also an accurate and precise method to measure the dimensions of human long bones. Calcif Tissue Int 54:101–105PubMedCrossRefGoogle Scholar
  27. 27.
    Szulc P, Uusi-Rasi K, Claustrat B, Marchand F, Beck TJ, Delmas PD (2004) Role of sex steroids in the regulation of bone morphology in men. The MINOS study Osteoporos Int 15:909–917PubMedCrossRefGoogle Scholar
  28. 28.
    Prevrhal S, Shepherd JA, Faulkner KG, Gaither KW, Lang TF (2006) Validation of DXA hip strauctural analysis implementations with a QCT volumetric gold standard. J Bone Miner Res 21(suppl 1):S56 (abstr)Google Scholar
  29. 29.
    Faulkner KG, Shepherd JA, Gaither KW, Fan B, Lewiecki EM, Miller PD et al (2006) Disagreement of hip strength analysis results between GE Lunar and Hologic DXA systems. J Bone Miner Res 21(suppl 1):S86 (Abstr)Google Scholar
  30. 30.
    Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18PubMedCrossRefGoogle Scholar
  31. 31.
    Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Ericksen EF, Sato M, Beck TJ (2005) Effects of Teriparatide [rhPTH (1–34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 36:948–958PubMedCrossRefGoogle Scholar
  32. 32.
    Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD (2006) Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int 17:231–236PubMedCrossRefGoogle Scholar
  33. 33.
    Beck TJ, Miller PD, Lewiecki EM, Felsenberg D, Sun L, Libanati C et al (2006) Denosumab improves the structural geometry of the proximal femur in postmenopausal women with low bone mass J Bone Miner Res 21:S71 (Abstr)CrossRefGoogle Scholar
  34. 34.
    Bertoldo E, Dalle Carbonare L, Zanatta M, Zenari S, Valenti MT, Giovanazzi B et al (2006) Different effects of Teriparatide and Alendronate on BMD and biomechanical characteristics of the hip in postmenopausal women. J Bone Miner Res 21:S112 (Abstr)Google Scholar
  35. 35.
    Kolta S, Le Bras A, Mitton D, Bousson V, De Guise J, Fechtenbaum J et al (2005) The three-Dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device. Osteoporos Int 16:969–976PubMedCrossRefGoogle Scholar

In Vivo Quantitative Computed Tomography of Cortical Bone

  1. 1.
    Werner C, Iversen BF, Therkildsen MH (1988) Contribution of the trabecular component to mechanical strength and bone mineral content of the femoral neck. An experimental study on cadaver bones. Scand J Clin Lab Invest 48:457–460PubMedCrossRefGoogle Scholar
  2. 2.
    Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fractures. Osteoporos Int 5:252–261PubMedCrossRefGoogle Scholar
  3. 3.
    Laval-Jeantet AM, Bergot C, Carroll R, Garcia-Schaefer F (1983) Cortical bone senescence and mineral bone density of the humerus. Calcif Tissue Int 35:268–272PubMedCrossRefGoogle Scholar
  4. 4.
    Mueller KH, Trias A, Ray RD (1966) Bone density and composition. Age-related and pathological changes in water and mineral content. J Bone Joint Surg [Am] 48-A:140–148Google Scholar
  5. 5.
    McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. J Bone Joint Surg [Am] 75-A:1193–1205Google Scholar
  6. 6.
    Dickenson RP, Hutton WC, Scott JRR (1981) The mechanical properties of bone in osteoporosis. J Bone Joint Surg [Br] 63-B:233–238Google Scholar
  7. 7.
    Dougherty G (1996) Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis. Med Eng Phys 18:557–568PubMedCrossRefGoogle Scholar
  8. 8.
    Engelke K, Grampp S, Glüer CC, Jergas M, Yang SO, Genant HK (1995) Significance of QCT bone mineral density and its standard deviation as parameters to evaluate osteoporosis. J Comput Assist Tomogr 19:111–116PubMedCrossRefGoogle Scholar
  9. 9.
    Bousson V, Bergot C, Meunier A, Barbot F, Parlier-Cuau C, Laval-Jeantet AM et al (2000) CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiol 217:179–187CrossRefGoogle Scholar
  10. 10.
    Newman DL, Dougherty G, Al Obaid A, Al Hajrasy H (1998) Limitations of clinical CT in assessing cortical thickness and density. Phys Med Biol 43:619–626PubMedCrossRefGoogle Scholar
  11. 11.
    Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11:1518–1525PubMedCrossRefGoogle Scholar
  12. 12.
    Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764PubMedCrossRefGoogle Scholar
  13. 13.
    Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30:1–8PubMedCrossRefGoogle Scholar
  14. 14.
    Engelke K, Langner O, Deac P, Bousson V, Laredo JD, Kalender W (2006) Radiation exposure in 3D QCT of the hip: comparison of simulations with in-vitro investigations. Results from the EFFECT study. In: 17 Bone Densitometry Workshop; 2006; KyotoGoogle Scholar
  15. 15.
    Glüer CC, Blake G, Blunt B, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270PubMedCrossRefGoogle Scholar
  16. 16.
    Kang Y, Engelke K, Kalender WA (2004) Interactive 3D editing tools for image segmentation. Med Image Anal 8:35–46PubMedCrossRefGoogle Scholar
  17. 17.
    Kang Y, Engelke K, Fuchs C, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29:533–541PubMedCrossRefGoogle Scholar
  18. 18.
    Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10:560–577PubMedCrossRefGoogle Scholar
  19. 19.
    Li W, Sode M, Saeeed I, Lang T (2006) Automated registration of hip and spine for longitudinal QCT studies: integration with 3D densitometric and structural analysis. Bone 38:273–279PubMedCrossRefGoogle Scholar
  20. 20.
    Riggs BL, Melton LJI, Robb RA, Camp JJ, Atkinson EJ, Peterson JM et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRefGoogle Scholar
  21. 21.
    Sigurdsson G, Aspelund T, Chang M, Jonsdottir B, Sigurdsson S, Eiriksdottir G et al (2006) Increasing sex difference in bone strength in old age: the Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone 39:644–651PubMedCrossRefGoogle Scholar
  22. 22.
    Lang T, LeBlanc AD, Evans H, Lu Y, Genant HK, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012PubMedCrossRefGoogle Scholar
  23. 23.
    Vainionpaa A, Korpelainen R, Sievanen H, Vihriala E, Leppaluoto J, Jamsa T (2007) Effect of impact exercice and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40:604–611PubMedCrossRefGoogle Scholar
  24. 24.
    Daly RM, Bass S, Nowson C (2006) Long-term effects of calcium-vitamin-D3-fortified milk on bone geometry and strength in older men. Bone 39:946–953PubMedCrossRefGoogle Scholar
  25. 25.
    Cheng X, Li J, Lu Y, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174PubMedCrossRefGoogle Scholar
  26. 26.
    Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF et al (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215PubMedCrossRefGoogle Scholar

In vitro assessment of cortical bone micro-structure from micro-ct

  1. 1.
    Shaffer MB, Burr DB (1988) Stiffness of compact bone: effect of porosity and density. J Biomech 21:13–16CrossRefGoogle Scholar
  2. 2.
    Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: Cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119PubMedCrossRefGoogle Scholar
  3. 3.
    Stout SD, Brunsden BS, Hildebolt CF, Commean PK, Smith KE, Tappen NC (1999) Computer-assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons. Calcif Tissue Int 65(4):280–284 OctPubMedCrossRefGoogle Scholar
  4. 4.
    Wachter NJ, Augat P, Krischak GD, Mentzel M, Kinzl L, Claes L (2001) Prediction of cortical bone porosity in vitro by microcomputed tomography. Calcif Tissue Int 68(1):38–42 JanPubMedCrossRefGoogle Scholar
  5. 5.
    Cooper DM, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74(5):437–447, MayPubMedCrossRefGoogle Scholar
  6. 6.
    Cooper D, Turinsky A, Sensen C, Hallgrimsson B (2007) Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int 80(3):211–219, MarPubMedCrossRefGoogle Scholar
  7. 7.
    Basillais A, Bensamoun S, Chappard C, Brunet-Imbault B, Lemineur G, Ilharreborde B, Ho Ba Tho MC, Benhamou CL (2007) Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci 12:141–148PubMedCrossRefGoogle Scholar
  8. 8.
    Bousson V, Peyrin F, Bergot C, Hausard M, Sautet A, Laredo JD (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19(5):794–801, MayPubMedCrossRefGoogle Scholar
  9. 9.
    Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17(8):1372–1382, AugPubMedCrossRefGoogle Scholar
  10. 10.
    Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, Laugier P (2006) Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys Med Biol 51(3):733–746, Feb 7PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40(4):957–965, AprPubMedCrossRefGoogle Scholar
  12. 12.
    Borah B, Dufresne TE, Ritman EL, Jorgensen SM, Liu S, Chmielewski PA, Phipps RJ, Zhou X, Sibonga JD, Turner RT (2006) Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39(2):345–352, AugPubMedCrossRefGoogle Scholar
  13. 13.
    Peter Z, Bousson V, Bergot C, Peyrin F (2007) A constrained region growing approach based on watershed for the segmentation of low contrast structures in bone micro-CT images, submitted Pattern RecognitionGoogle Scholar

Quantitative ultrasound for cortical bone characterization

  1. 1.
    Barkmann R, Kantorovich E, Singal C, Hans D, Genant H, Heller M, Glüer C (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites. J Clin Densitometry 3:1–7CrossRefGoogle Scholar
  2. 2.
    Baron C, Talmant M, Laugier P (in press) Effect of porosity on effective stiffness (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. J Acoust Soc AmGoogle Scholar
  3. 3.
    Bensamoun S, Gherbezza JM, de Belleval JF, Ho Ba Tho MC (2004) Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin Biomech (Bristol, Avon) 19:639–647CrossRefGoogle Scholar
  4. 4.
    Bensamoun S, Ho Ba Tho MC, Luu S, Gherbezza JM, de Belleval JF (2004) Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 37:503–510PubMedCrossRefGoogle Scholar
  5. 5.
    Bossy E, Talmant M, Defontaine M, Patat F, Laugier P (2004) Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. IEEE Trans Ultrason Ferroelectr Freq Control. 51:71–79PubMedCrossRefGoogle Scholar
  6. 6.
    Bossy E, Talmant M, Laugier P (2002) Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J Acoust Soc Am 112:297–307PubMedCrossRefGoogle Scholar
  7. 7.
    Bossy E, Talmant M, Laugier P (2004) Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 115:2314–2324PubMedCrossRefGoogle Scholar
  8. 8.
    Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 19:1548–56. Epub 2004 Jun 2PubMedCrossRefGoogle Scholar
  9. 9.
    Daniel IM, Liber T, LaBedz RH (1979) Wave propagation in transversely impacted composite laminates. Experimental Mechanics 19:9–16CrossRefGoogle Scholar
  10. 10.
    Hans D, Srivastav S, Singal C, Barkmann R, Njeh C, Kantorovich E, al., e (1999) Does combining the results from multiple bone sites measured by a new quantitaive ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14:644–651PubMedCrossRefGoogle Scholar
  11. 11.
    Hasegawa K, Turner CH, Recker RR, Wu E, Burr DB (1995) Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16:85–90PubMedCrossRefGoogle Scholar
  12. 12.
    Hofman T, Raum K, Leguerney I, Saied A, Peyrin F, Vico LPL (2006) Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy. Ultrasonics 44:e1307–e1311PubMedCrossRefGoogle Scholar
  13. 13.
    Hofmann T, Heyroth F, Meinhard H, Franzel W, Raum K (2006) Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech 39:2282–2294PubMedCrossRefGoogle Scholar
  14. 14.
    Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381. Epub 2004 Jan 22PubMedCrossRefGoogle Scholar
  15. 15.
    Kohles SS, Vanderby RJ, Ashman RB, Manley PA, Markel MD, Heiner JP (1994) Ultrasonically determined elasticity and cortical density in canine femora after hip arthroplasty. J Biomech 27:137–144PubMedCrossRefGoogle Scholar
  16. 16.
    Lee SC, Coan BS, Bouxsein ML (1997) TIbial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone 21:119–125PubMedCrossRefGoogle Scholar
  17. 17.
    Lefebvre F, Deblock Y, Campistron P, Ahite D, Fabre JJ (2002) Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. J Biomed Mater Res 63:441–446PubMedCrossRefGoogle Scholar
  18. 18.
    Liao X, Zhang W, He J, Sun J, Huang P (2005) Bone measurements of infants in the first 3 months of life by quantitative ultrasound: the influence of gestational age, season, and postnatal age. Pediatr Radiol 35:847–853PubMedCrossRefGoogle Scholar
  19. 19.
    McDevitt H, Ahmed SF (2007) Quantitative ultrasound assessment of bone health in the neonate. Neonatology 91:2–11PubMedCrossRefGoogle Scholar
  20. 20.
    Meunier A, Katz JL, Christel P, Sedel L (1988) A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies. J Orthop Res 6:770–775PubMedCrossRefGoogle Scholar
  21. 21.
    Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J (2007) Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study. Ultrasound Med Biol 33:254–262PubMedCrossRefGoogle Scholar
  22. 22.
    Moilanen P, Talmant M, Nicholson PH, Cheng S, Timonen J, Laugier P Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments. J Acoust Soc Am:in press.Google Scholar
  23. 23.
    Moilanen P, Talmant M, Nicholson PH, Cheng S, Timonen J, Laugier P Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. J Acoust Soc Am:in press.Google Scholar
  24. 24.
    Muller M, Moilanen P, Bossy E, Nicholson P, Kilappa V, Timonen J, Talmant M, Cheng S, Laugier P (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31:633–642PubMedCrossRefGoogle Scholar
  25. 25.
    Nicholson P, Moilanen P, Kärkkäinen T, Timonen J, Cheng S (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23:755–768PubMedCrossRefGoogle Scholar
  26. 26.
    Njeh CF, Hans D, Fuerst T, Glüer CC, Genant HK (1999) Quantitative Ultrasound: assesment of osteoporosis and bone status. Martin Dunitz, LondonGoogle Scholar
  27. 27.
    Protopappas VC, Baga DA, Fotiadis DI, Likas AC, Papachristos AA, Malizos KN (2005) An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. IEEE Trans Biomed Eng 52:1597–1608PubMedCrossRefGoogle Scholar
  28. 28.
    Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31:1225–1235PubMedCrossRefGoogle Scholar
  29. 29.
    Raum K, Reisshauer J, Brandt J (2004) Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A 71:430–438PubMedCrossRefGoogle Scholar
  30. 30.
    Rho JY (1996) An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics 34:777–783PubMedCrossRefGoogle Scholar
  31. 31.
    Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann MSS, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporosis Int 12:28–34CrossRefGoogle Scholar
  32. 32.
    Sievanen H, Cheng S, Ollikainen S, Uusi-Rasi K (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12:399–405PubMedCrossRefGoogle Scholar
  33. 33.
    Ta DA, Huang K, Wang WQ, Wang YY, Le LH (2006) Identification and analysis of multimode guided waves in tibia cortical bone. Ultrasonics 44:e279–e284PubMedCrossRefGoogle Scholar
  34. 34.
    Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43:672–680PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Turner CH, Takano YTH (1996) Reductions in bone strength after fluoride treatment are not reflected in tissue-level acoustic measurements. Bone 19:603–607PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss M, Ben-Shlomo APH, Ish-Shalom S (2000) Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius. Osteoporosis Int 11:411–416CrossRefGoogle Scholar

Animal models and cortical bone: insights from genetic animal models and the affects of estrogen and androgen

  1. 1.
    Donahue SW, Galley SA (2006) Micodamage in bone : implications for fracture, repair, remodeling and adaptation. Critical Rev Biomed Eng 34:215–271CrossRefGoogle Scholar
  2. 2.
    Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T (2005) Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol 289(3):C633–C643, SepPubMedCrossRefGoogle Scholar
  3. 3.
    Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061PubMedCrossRefGoogle Scholar
  4. 4.
    Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpson ER (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95PubMedCrossRefGoogle Scholar
  5. 5.
    Bilezikian JP, Morishima A, Bell J, Grumbach MM (1998) Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 339:599–603PubMedCrossRefGoogle Scholar
  6. 6.
    Onoe Y, Miyaura C, Ohta H, Nozawa S, Suda T (1997) Expression of estrogen receptor beta in rat bone. Endocrinology 138(10):4509–4512, OctPubMedGoogle Scholar
  7. 7.
    Couse JF, Curtis SW, Washburn TF, Lindzey J, Golding TS, Lubahn DB, Smithies O, Korach KS (1995) Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol Endocrinol 9:1441–1454PubMedGoogle Scholar
  8. 8.
    Parikka V, Peng Z, Hentunen T, Risteli J, Elo T, Vaananen HK, Harkonen P (2005) Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor-alpha-deficient male and female mice. Eur J Endocrinol 152(2):301–314PubMedCrossRefGoogle Scholar
  9. 9.
    Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc Natl Acad Sci USA 95:15677–15682PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30(1):18–25PubMedCrossRefGoogle Scholar
  11. 11.
    Sims NA, Clement-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M,Resche-Rigon M, Baron R (2003) A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 111(9):1319–1327PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ke HZ, Brown TA, Qi H, Crawford DT, Simmons HA, Petersen DN, Allen MR, McNeish JD, Thompson DD (2002) The role of estrogen receptor-beta, in the early age-related bone gain and later age-related bone loss in female mice. J Musculoskelet Neuronal Interact 2(5):479–488, SepPubMedGoogle Scholar
  13. 13.
    Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C (2000) Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA 97(10):5474–5479PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Weihua Z, Saji S, Makinen S, Cheng G, Jensen EV, Warner M, Gustafsson JA (2000) Estrogen receptor (ER) β, a modulator of ERá in the uterus. Proc Natl Acad Sci USA 97:5936–5941PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171(2):229–236PubMedCrossRefGoogle Scholar
  16. 16.
    Syed FA, Modder UI, Fraser DG, Spelsberg TC, Rosen CJ, Krust A, Chambon P, Jameson JL, Khosla S (2005) Skeletal effects of estrogen are mediated by opposing actions of classical and non-classical estrogen receptor pathways. J Bone Miner Res 20(11):1992–2001PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Syed FA, Fraser DG, Spelsberg TC, Rosen CJ, Krust A, Chambon P, Jameson JL, Khosla S (2007) Effects of loss of classical estrogen response element signaling on bone in male mice. Endocrinology 148(4):1902–1910PubMedCrossRefGoogle Scholar
  18. 18.
    Miyaura C, Toda K, Inada M, Ohshiba T, Matsumoto C, Okada T, Ito M, Shizuta Y, Ito A (2001) Sex- and age-related response to aromatase deficiency in bone. Biochem Biophys Res Commun 280(4):1062–1068PubMedCrossRefGoogle Scholar
  19. 19.
    Onoe Y, Miyaura C, Ito M, Ohta H, Nozawa S, Suda T (2000) Comparative effects of estrogen and raloxifene on B-lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J Bone Miner Res 15:541–549PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto C, Inada M, Toda K, Miyaura C (2006) Estrogen and androgen play distinct roles in bone turnover in male mice before and after reaching sexual maturity. Bone 38(2):220–226, Epub 2005 Oct 6PubMedCrossRefGoogle Scholar
  21. 21.
    Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D (2006) Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 21(4):576–585, AprPubMedCrossRefGoogle Scholar
  22. 22.
    Khosla S, Melton LJ 3rd, Riggs BL (2002) Clinical review 144: Estrogen and the male skeleton. J Clin Endocrinol Metab 87(4):1443–1450, Review, AprPubMedCrossRefGoogle Scholar
  23. 23.
    Lee KC, Jessop H, Suswillo R, Zaman G, Lanyon LE (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J Endocrinol 182(2):193–201, AugPubMedCrossRefGoogle Scholar
  24. 24.
    Saxon LK, Turner CH (2005) Estrogen receptor β: the anti-mechanostat? Bone 36:185–192PubMedCrossRefGoogle Scholar
  25. 25.
    Khosla S, Moedder UI, Syed FA. Letter to the editor Bone, Volume 38, Issue 2, Pages 289–289Google Scholar
  26. 26.
    Moverare S, Venken K, Eriksson AL, Andersson N, Skrtic S, Wergedal J, Mohan S, Salmon P, Bouillon R, Gustafsson JA, Vanderschueren D, Ohlsson C. (2003) Differential effects on bone of estrogen receptor alpha and androgen receptor activation in orchidectomized adult male mice. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13573–8. Epub 2003 Oct 22. Erratum in: Proc Natl Acad Sci USA 23;103(21):8298Google Scholar
  27. 27.
    Venken K, Schuit F, Van Lommel L, Tsukamoto K, Kopchick JJ, Coschigano K, Ohlsson C, Moverare S, Boonen S, Bouillon R, Vanderschueren D (2005) Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. J Bone Miner Res 20(12):2138–2149PubMedCrossRefGoogle Scholar

Cortical bone remodeling

  1. 1.
    Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Eriksen EF, Sato M, Beck TJ (2005) Effects of teriparatide [rhPTH (1-34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 36:948–958PubMedCrossRefGoogle Scholar
  2. 2.
    Ego Seeman (2003) Periosteal Bone Formation — A Neglected Determinant of Bone Strength. New Engl J Medicine 349:320–323CrossRefGoogle Scholar
  3. 3.
    Ellender G, Feik SA, Carach BJ (1988) Periosteal structure and development in a rat caudal vertebra. J Anat 158:173–187PubMedPubMedCentralGoogle Scholar
  4. 4.
    Riggs BL, Melton LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954PubMedCrossRefGoogle Scholar
  5. 5.
    Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494PubMedCrossRefGoogle Scholar
  6. 6.
    Seeman E, Karlsson MK, Duan Y (2000) On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and density: a cross-sectional study. J Bone Miner Res 15:2259–2265PubMedCrossRefGoogle Scholar
  7. 7.
    Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863PubMedCrossRefGoogle Scholar
  8. 8.
    Lazenby RA (1990) Continuing periosteal apposition I: Documentation, hypotheses, and interpretation. AM J Phys Anthropol 82:461–472Google Scholar
  9. 9.
    Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2275PubMedCrossRefGoogle Scholar
  10. 10.
    Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 18:939–954CrossRefGoogle Scholar
  11. 11.
    Epker BN, Frost HM (1966) Periosteal apposition bone growth from age two to age seventy in man. A tetracycline evaluation. Anat Rec 154:573–578PubMedCrossRefGoogle Scholar
  12. 12.
    Balena R, Shih MS, Parfitt AM (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482PubMedCrossRefGoogle Scholar
  13. 13.
    Sietsema WK (1995) Animal models of cortical porosity. Bone 17:297S–305SPubMedGoogle Scholar
  14. 14.
    Rauch F, Travers R, Glorieux FH (2006) Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res 21:513–519PubMedCrossRefGoogle Scholar
  15. 15.
    Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development–a histomorphometric study. Bone 40(2):274–280PubMedCrossRefGoogle Scholar
  16. 16.
    Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16:1308–1317PubMedCrossRefGoogle Scholar
  17. 17.
    Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melson F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691PubMedCrossRefGoogle Scholar
  18. 18.
    De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221PubMedCrossRefGoogle Scholar

Age-related changes in the cortical bonein men and women – clinical aspects

  1. 1.
    Seeman E (2003) Periosteal bone formation – a neglected determinant of bone strength. N Engl J Med 349:320–323PubMedCrossRefGoogle Scholar
  2. 2.
    Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodelling of the human femur and tibia with aging. Science 217:945–948PubMedCrossRefGoogle Scholar
  3. 3.
    Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, Guralnik J, Ferrucci L (2006) Structural adaptations to bone loss in aging men and women. Bone 38:112–118PubMedCrossRefGoogle Scholar
  4. 4.
    Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16:1308–1317PubMedCrossRefGoogle Scholar
  5. 5.
    Beck TJ (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14(Suppl 5):S81–S88PubMedCrossRefGoogle Scholar
  6. 6.
    Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570PubMedCrossRefGoogle Scholar
  7. 7.
    Beck TJ, Looker AC, Ruff CB, Sievänen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMedCrossRefGoogle Scholar
  8. 8.
    Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. I Orthop Res 6:886–896CrossRefGoogle Scholar
  9. 9.
    Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMedCrossRefGoogle Scholar
  10. 10.
    Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMedCrossRefGoogle Scholar
  11. 11.
    Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and stricture at different skeletal sites? J Bone Miner Res 19:1945–1954PubMedCrossRefGoogle Scholar
  12. 12.
    Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES2 (2006) Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 21:1197–1206PubMedCrossRefGoogle Scholar
  13. 13.
    Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRefGoogle Scholar
  14. 14.
    Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmeopausal women. J Bone Miner Res 21:1856–1863PubMedCrossRefGoogle Scholar
  15. 15.
    Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int 18:495–503PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2006) Low width of tubular bones is associated with increased risk of fragility fracture in elderly men – the MINOS study. Bone 38:595–602PubMedCrossRefGoogle Scholar
  17. 17.
    Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK (2000) Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27:437–444PubMedCrossRefGoogle Scholar
  18. 18.
    Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL, Sartoris DJ, Brodine S (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. marine corps recruits. J Bone Miner Res 11:645–653PubMedCrossRefGoogle Scholar
  19. 19.
    Armstrong DW, Rue JPH, Wilckens JH, Frassica FJ (2004) Stress fracture injury in young military men and women. Bone 35:806–816PubMedCrossRefGoogle Scholar
  20. 20.
    Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 2332–2337Google Scholar
  21. 21.
    Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site-specific deficits in bone size and volumetric density in men with spine of hip fractures. J Bone Miner Res 16:120–127PubMedCrossRefGoogle Scholar
  22. 22.
    Neil Dong X, Guo XE (2004) The denpendence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech 37:1281–1287PubMedCrossRefGoogle Scholar
  23. 23.
    Seeman E (2004) The growth and age-related origins of bone fragility in men. Calcif Tissue Int 75:1000–1109Google Scholar
  24. 24.
    Seeman E (2007) The periosteum – a surface for all seasons. Osteoporos Int 18:123–128PubMedCrossRefGoogle Scholar
  25. 25.
    Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309PubMedCrossRefGoogle Scholar
  26. 26.
    Meulen MCH van der, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104CrossRefGoogle Scholar
  27. 27.
    Vashishth D, Verborgt O, Divine G, Schffler MB, Fyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380PubMedCrossRefGoogle Scholar

Cortical Bone and physical activity

  1. 1.
    Ruff CB, Hayes CE (1984) Bone-mineral content in the lower limb. Relationship to cross-sectional geometry. J Bone Joint Surg Am 66(7):1024–1031PubMedGoogle Scholar
  2. 2.
    Seeman E (1998) Editorial: growth in bone mass and size - Are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 83(5):1414–1419PubMedGoogle Scholar
  3. 3.
    Seeman E (2001) Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86(10):4576–4584PubMedCrossRefGoogle Scholar
  4. 4.
    Seeman E (2002) An exercise in geometry. J Bone Miner Res 17(3):373–380PubMedCrossRefGoogle Scholar
  5. 5.
    Seeman E (2003) Periosteal bone formation - a neglected determinant of bone strength. N Engl J Med 349(4):320–323PubMedCrossRefGoogle Scholar
  6. 6.
    Järvinen TL, Kannus P, Sievänen H (1999) Have the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone? J Bone Miner Res 14(9):1634–1635PubMedCrossRefGoogle Scholar
  7. 7.
    Currey JD (2001) Bone strength: what are we trying to measure? Calcif Tissue Int 68:205–210PubMedCrossRefGoogle Scholar
  8. 8.
    Seeman E, Wahner HW, Offord KP et al. (1982) Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 69:1302–1309PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mundy GR (1999) Primer on the metabolic bone deseases and disorders of mineral metabolism (Fourth edition). Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  10. 10.
    Sone T, Imai Y, Joo YI et al. (2006) Side-to-side differences in cortical bone mineral density of tibiae in young male athletes. Bone 38(5):708–713PubMedCrossRefGoogle Scholar
  11. 11.
    Bouxsein ML (2005) Determinants of skeletal fragility. Best Pract Res Clin Rheumatol 19(6):897–911PubMedCrossRefGoogle Scholar
  12. 12.
    Vainionpaa A, Korpelainen R, Sievanen H et al. (2007) Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40(3):604–611PubMedCrossRefGoogle Scholar
  13. 13.
    Greene DA, Naughton GA, Briody JN et al. (2005) Bone strength index in adolescent girls: does physical activity make a difference? Br J Sports Med 39(9):622–627PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Duncan CS, Blimkie CJ, Kemp A et al. (2002) Mid-femur geometry and biomechanical properties in 15- to 18-yr-old female athletes. Med Sci Sports Exerc 34(4):673–681PubMedCrossRefGoogle Scholar
  15. 15.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608PubMedCrossRefGoogle Scholar
  16. 16.
    Epstein S (2007) Is cortical bone hip? What determines cortical bone properties? BoneGoogle Scholar
  17. 17.
    Allen MR, Hock JM, Burr DB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35(5):1003–1012PubMedCrossRefGoogle Scholar
  18. 18.
    Lai YM, Qin L, Hung VW et al. (2005) Regional differences in cortical bone mineral density in the weight-bearing long bone shaft–a pQCT study. Bone 36(3):465–471PubMedCrossRefGoogle Scholar
  19. 19.
    Burnham JM, Shults J, Petit MA et al. (2007) Alterations in proximal femur geometry in children treated with glucocorticoids for Crohn disease or nephrotic syndrome: impact of the underlying disease. J Bone Miner Res 22(4):551–559PubMedCrossRefGoogle Scholar
  20. 20.
    Kaptoge S, Jakes RW, Dalzell N et al. (2007) Effects of physical activity on evolution of proximal femur structure in a younger elderly population. Bone 40(2):506–515PubMedCrossRefGoogle Scholar
  21. 21.
    Kontulainen S, Sievanen H, Kannus P et al. (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18(2):352–359PubMedCrossRefGoogle Scholar
  22. 22.
    Haapasalo H, Kontulainen S, Sievanen H et al. (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27(3):351–357PubMedCrossRefGoogle Scholar
  23. 23.
    Sievanen H, Koskue V, Rauhio A et al. (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13(5):871–882PubMedCrossRefGoogle Scholar
  24. 24.
    Hogler W, Blimkie CJ, Cowell CT et al. (2003) A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33(5):771–778PubMedCrossRefGoogle Scholar
  25. 25.
    McKay HA, Sievanen H, Petit MA et al. (2004) Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 7(2):161–168PubMedCrossRefGoogle Scholar
  26. 26.
    Bass SL, Saxon L, Daly RM et al. (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17(12):2274–2280PubMedCrossRefGoogle Scholar
  27. 27.
    Daly RM, Saxon L, Turner CH et al. (2004) The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 34(2):281–287PubMedCrossRefGoogle Scholar
  28. 28.
    Ducher G, Courteix D, Meme S et al. (2005) Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players. Bone 37(4):457–466PubMedCrossRefGoogle Scholar
  29. 29.
    Hong J, Hipp JA, Mulkern RV et al. (2000) Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 66(1):74–78PubMedCrossRefGoogle Scholar
  30. 30.
    Woodhead HJ, Kemp AF, Blimkie CJR et al. (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16(12):2251–2259PubMedCrossRefGoogle Scholar
  31. 31.
    Bradney M, Pearce G, Naughton G et al. (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13(12):1814–1821PubMedCrossRefGoogle Scholar
  32. 32.
    Cavanaugh DJ, Cann CE (1988) Brisk walking does not stop bone loss in postmenopausal women. Bone 9(4):201–204PubMedCrossRefGoogle Scholar
  33. 33.
    Nikander R, Sievanen H, Uusi-Rasi K et al. (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39(4):886–894PubMedCrossRefGoogle Scholar
  34. 34.
    Currey JD (2001) Bone strength: what are we trying to measure? Calcif Tissue Int 68(4):205–210PubMedCrossRefGoogle Scholar
  35. 35.
    Bailey DA, Faulkner RA, McKay HA (1996) Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev 24:233–266PubMedCrossRefGoogle Scholar
  36. 36.
    Courteix D, Lespessailles E, Jaffre C et al. (1999) Bone material acquisition and somatic development in highly trained girl gymnasts. Acta Paediatr 88:803–808PubMedCrossRefGoogle Scholar
  37. 37.
    Andreoli A, Monteleone M, Van Loan M et al. (2001) Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc 33:507–511PubMedCrossRefGoogle Scholar
  38. 38.
    Gustavsson A, Thorsen K, Nordstrom P (2003) A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int 73:108–114PubMedCrossRefGoogle Scholar
  39. 39.
    Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18(2):97–102PubMedCrossRefGoogle Scholar
  40. 40.
    Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2(2):73–85PubMedGoogle Scholar
  41. 41.
    Ward KA, Roberts SA, Adams JE et al. (2005) Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36(6):1012–1018PubMedCrossRefGoogle Scholar
  42. 42.
    Liu L, Maruno R, Mashimo T et al. (2003) Effects of physical training on cortical bone at midtibia assessed by peripheral QCT. J Appl Physiol 95(1):219–224PubMedCrossRefGoogle Scholar
  43. 43.
    Heinonen A, Sievanen H, Kannus P et al. (2002) Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 70(6):469–474PubMedCrossRefGoogle Scholar
  44. 44.
    Vainionpaa A, Korpelainen R, Sievanen H et al. (2007) Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone 40(3):604–611PubMedCrossRefGoogle Scholar
  45. 45.
    Warden SJ, Hurst JA, Sanders MS et al. (2005) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20(5):809–816PubMedCrossRefGoogle Scholar
  46. 46.
    Rittweger J, Beller G, Ehrig J et al. (2000) Bone-muscle strength indices for the human lower leg. Bone 27(2):319–326PubMedCrossRefGoogle Scholar
  47. 47.
    Schoenau E, Neu CM, Beck B et al. (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17(6):1095–1101PubMedCrossRefGoogle Scholar
  48. 48.
    Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12(10):1547–1551PubMedCrossRefGoogle Scholar
  49. 49.
    Alfredson H, Nordstrom P, Lorentzon R (1996) Total and regional bone mass in female soccer players. Calcif Tissue Int 59(6):438–442PubMedCrossRefGoogle Scholar
  50. 50.
    Nordstrom P, Thorsen K, Bergstrom E et al. (1996) High bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys on a high level of physical activity. Bone 19(2):189–195PubMedCrossRefGoogle Scholar
  51. 51.
    Gilsanz V, Wren TA, Sanchez M et al. (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21(9):1464–1474PubMedCrossRefGoogle Scholar
  52. 52.
    Rubin C, Turner AS, Muller R et al. (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17(2):349–357PubMedCrossRefGoogle Scholar
  53. 53.
    Rubin C, Recker R, Cullen D et al. (2004) Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19(3):343–351PubMedCrossRefGoogle Scholar
  54. 54.
    Ward K, Alsop C, Caulton J et al. (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19(3):360–369PubMedCrossRefGoogle Scholar
  55. 55.
    Wallace BA, Cumming RG (2000) Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 67(1):10–18PubMedCrossRefGoogle Scholar
  56. 56.
    Wolff I, van Croonenborg JJ, Kemper HC et al. (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9(1):1–12PubMedCrossRefGoogle Scholar
  57. 57.
    Vico L, Collet P, Guignandon A et al. (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215):1607–1611PubMedCrossRefGoogle Scholar
  58. 58.
    Lang T, LeBlanc A, Evans H et al. (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19(6):1006–1012PubMedCrossRefGoogle Scholar

Changes in cortical bone during secondary and male osteoporosis

  1. 1.
    Brockstedt H, Christiansen P, Mosekilde L, Melsen F (1995) Reconstruction of cortical bone remodeling in untreated primary hyperparathyroidism and fallowing surgery. Bone 16:109–117PubMedCrossRefGoogle Scholar
  2. 2.
    Uchiyama T, Tanizawa T, Takahashi H (1999) Microstructure of the trabecula and cortex of iliac bone in primary hyperparathyroidism patients determined using histomorphometry and mode-strut analysis. J Bone Miner Meta 17:283–288CrossRefGoogle Scholar
  3. 3.
    Steiniche T, Christiansen P, Vesterby A, Ullerup R, Hessov I, Mosekilde LE, Melsen F (2000) Primary hyperparathyroidism : bone structure, balance, and remodeling before and 3 years after surgical treatment. Bone 26:535–543PubMedCrossRefGoogle Scholar
  4. 4.
    Christiansen P, Steiniche T, Brixen K, Hessov I, Melsen F, Charles P, Mosekilde (1997) Primary hyperparathyroidism : biochemical markers and bone mineral density at multiple skeletal sites in danish patients. Bone 21:93–99PubMedCrossRefGoogle Scholar
  5. 5.
    Chen Q, Kaji H, IU MF, Nomura R, Sowa H, Yamauchi M, Tsukamoto T, Sugimoto T, Chihara K (2003) Effects of an excess and a deficiency of endogenoys parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab 88:4655–4658PubMedCrossRefGoogle Scholar
  6. 6.
    Charopoulos I, Tournis S, Trovas G, Raptou P, Kaldrymides P, Skarandavos G, Katsalira K, Lyritis GP (2006) Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab 91:1748–1753PubMedCrossRefGoogle Scholar
  7. 7.
    Khosla S, Melton III LJ (2002) Fracture risk in primary hyperparathyroidism. J Bone Miner Res 17:N103–N107PubMedGoogle Scholar
  8. 8.
    Uzzan B, Campos J, Cucherat M, Nony P, Boissel JP, Perret GY (1996) Effects on bone mass of long term treatment with thyroid hormones : a meta-analysis. J Clin Endocrinol metab 81:4278–4289PubMedGoogle Scholar
  9. 9.
    Belaya ZE, Melnichenko GA, Rozhinskaya LY, Fadeev V, Alekeeva TM, Dorofeeva OK, Sasonova NI, Kolesnikova GS (2007) Subclinical hyperthyroidism of variable etiology and its influence on bone in postmenopausal women. Hormones 6(1):6Google Scholar
  10. 10.
    Tsugeno H, Nakai M, Okamoto M, Harada S, Mifune T, Mitsunobu F, Ashida K, Hosaki Y, Tanizaki Y, Tsuji T (1999) Bone mineral density in steroid- dependent asthma assessed by peripheral quantitative computed tomography. Eur Respir J 14:923–927PubMedCrossRefGoogle Scholar
  11. 11.
    Tsurusaki K, Ito M, Hayashi K (2000) Differential effects of menopause and metabolic disease on trabecular and cortical bone assessed by peripheral quantitative computed tomography (pQCT). The British Journal of Radiology 73:14–22PubMedCrossRefGoogle Scholar
  12. 12.
    Chiodini I, Carnevale V, Torlontano M, Fussilli S, Guglielmi G, Pileri M, Modoni S, Di Giorsio A, Liuzzi A, Minisola S, Cammisa M, Trischitta V, Scillitani A (1998) Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess : study in eumenorrheic patients with cushing’s syndrome. J Clin Endocrinol Metab 83:1863–1867PubMedGoogle Scholar
  13. 13.
    Bottcher J, Pfeil A, Heinrich B, Lehmann G, Petrovitch A, Hansch A, Heyne JP, Mentzel HJ, Malich A, Hein G, Kaiser WA (2005) Digital radiogrammetry as a new diagnostic tool for estimation of disease-related osteoporosis in rheumatoid arthritis compared with pQCT. Rheumatol Int 25:457–464PubMedCrossRefGoogle Scholar
  14. 14.
    Roldan JF, Del Rincon I, Escalante A (2006) Loss of cortical bone from the metacarpal diaphysis in patients with rheumatoid arthritis : independent effects of systemic inflammation and glucocorticoids. J Rheumatol 33:508–516PubMedGoogle Scholar
  15. 15.
    Kiel DP, Hannan MT, Broe KE, Felson DT, Cupples LA (2001) Can metacarpal cortical area predict the occurrence od hip fracture in women and men over 3 decades of follow-up ? Results from the Framingham Osteoporosis Study. J Bone Miner Res 16:2260–2266PubMedCrossRefGoogle Scholar
  16. 16.
    Haara M, Heliovaara M, Impivaara O, Arokoski JPA, Manninen P, Knekt P, Karkkainen A, Reunanen A, Aromaa A, Kroger H (2006) Low metacarpal index predicts hip fracture A prospective population study of 3,561 subjects with 15 years of follow-up. Acta Orthopaedica 77(1):9–14PubMedCrossRefGoogle Scholar
  17. 17.
    Bollen AM, Taguchi A, Hujoel PP, Hollender LG (2000) Case-control study on self- reported osteoporotic fractures ans mandibular cortical bone. Oral Surg Oral Pathol Oral Radiol Endod 90:518–524CrossRefGoogle Scholar
  18. 18.
    Lorentzon M, Mellstrom D, Haug E, Ohlsson C (2007) Smoking is associated with lower bone mineral density and reducef cortical thickness in young men. J Clin Endocrinol Metab 92:497–503PubMedCrossRefGoogle Scholar
  19. 19.
    Lorentzon M, Mellstrom D, Ohlsson C (2005) Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in younf adult men: The GOOD study. J Bone Miner Res 20:1936–1943PubMedCrossRefGoogle Scholar

Cortical bone growth

  1. 1.
    Bonjour JP, Theintz G, Buchs B et al. (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563PubMedCrossRefGoogle Scholar
  2. 2.
    Bonjour JP, Rizzoli R (2001) Bone acquisition in adolescence. In Marcus R, Feldman D, Kelsey J (ed). Academic Press, San Diego, pp 621–638Google Scholar
  3. 3.
    Seeman E (1998) Growth in bone mass and size–are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 83:1414–1419PubMedGoogle Scholar
  4. 4.
    Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32:25–38PubMedCrossRefGoogle Scholar
  5. 5.
    Gilsanz V, Roe TF, Mora S et al. (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med 325:1597–1600PubMedCrossRefGoogle Scholar
  6. 6.
    Aharinejad S, Bertagnoli R, Wicke K et al. (1990) Morphometric analysis of vertebrae and intervertebral discs as a basis of disc replacement. Am J Anat 189:69–76PubMedCrossRefGoogle Scholar
  7. 7.
    Merz AL, Trotter M, Peterson RR (1956) Estimation of skeleton weight in the living. Am J Phys Anthropol 14:589–609PubMedCrossRefGoogle Scholar
  8. 8.
    Meema HE, Meema S (1963) Measurable Roentgenologic Changes in Some Peripheral Bones in Senile Osteoporosis. J Am Geriatr Soc 11:1170–1182PubMedCrossRefGoogle Scholar
  9. 9.
    Lu PW, Cowell CT, SA LL-J et al. (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590Google Scholar
  10. 10.
    Glorieux FH, Travers R, Taylor A et al. (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109PubMedCrossRefGoogle Scholar
  11. 11.
    Parfitt AM, Travers R, Rauch F et al. (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494PubMedCrossRefGoogle Scholar
  12. 12.
    Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development–a histomorphometric study. Bone 40:274–280PubMedCrossRefGoogle Scholar
  13. 13.
    Theintz G, Buchs B, Rizzoli R et al. (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065PubMedGoogle Scholar
  14. 14.
    Schoenau E, Neu CM, Rauch F et al. (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618PubMedCrossRefGoogle Scholar
  15. 15.
    Fournier PE, Rizzoli R, Slosman DO et al. (1997) Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int 7:525–532PubMedCrossRefGoogle Scholar
  16. 16.
    Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedCrossRefGoogle Scholar
  17. 17.
    Ferrari S, Rizzoli R, Slosman D et al. (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361PubMedGoogle Scholar
  18. 18.
    Winzenberg T, Shaw K, Fryer J et al. (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ (Clinical research ed) 333:775–778CrossRefGoogle Scholar
  19. 19.
    Chevalley T, Bonjour JP, Ferrari S et al. (2005) Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab 90:3342–3349PubMedCrossRefGoogle Scholar
  20. 20.
    Alexy U, Remer T, Manz F et al. (2005) Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. The American journal of clinical nutrition 82:1107–1114PubMedGoogle Scholar
  21. 21.
    Bounds W, Skinner J, Carruth BR et al. (2005) The relationship of dietary and lifestyle factors to bone mineral indexes in children. J Am Diet Assoc 105:735–741PubMedCrossRefGoogle Scholar
  22. 22.
    Cadogan J, Eastell R, Jones N et al. (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ (Clinical research ed 315:1255–1260CrossRefGoogle Scholar
  23. 23.
    Chevalley T, Ferrari S, Hans D et al. (2002) Protein intake modulates the effet of calcium supplementation on bone mass gain in prepubertal boys. J Bone Miner Res 17(Suppl. 1):S172Google Scholar
  24. 24.
    Clavien H, Theintz G, Rizzoli R et al. (1996) Does puberty alter dietary habits in adolescents living in a western society? J Adolesc Health 19:68–75PubMedCrossRefGoogle Scholar
  25. 25.
    Young VR, Borgonha S (2000) Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern. J Nutr 130:1841S–1849SPubMedGoogle Scholar
  26. 26.
    Chan GM, Hoffman K, McMurry M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126:551–556PubMedCrossRefGoogle Scholar
  27. 27.
    Black RE, Williams SM, Jones IE et al. (2002) Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. The American journal of clinical nutrition 76:675–680PubMedGoogle Scholar
  28. 28.
    Henderson RC, Hayes PR (1994) Bone mineralization in children and adolescents with a milk allergy. Bone Miner 27:1–12PubMedCrossRefGoogle Scholar
  29. 29.
    Hidvegi E, Arato A, Cserhati E et al. (2003) Slight decrease in bone mineralization in cow milk-sensitive children. J Pediatr Gastroenterol Nutr 36:44–49PubMedCrossRefGoogle Scholar
  30. 30.
    Infante D, Tormo R (2000) Risk of inadequate bone mineralization in diseases involving long-term suppression of dairy products. J Pediatr Gastroenterol Nutr 30:310–313PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen VB, Jorgensen IM, Rasmussen KB et al. (2004) Bone mineral status in children with cow milk allergy. Pediatr Allergy Immunol 15:562–565PubMedCrossRefGoogle Scholar
  32. 32.
    Rockell JE, Williams SM, Taylor RW et al. (2005) Two-year changes in bone and body composition in young children with a history of prolonged milk avoidance. Osteoporos Int 16:1016–1023PubMedCrossRefGoogle Scholar
  33. 33.
    Opotowsky AR, Bilezikian JP (2003) Racial differences in the effect of early milk consumption on peak and postmenopausal bone mineral density. J Bone Miner Res 18:1978–1988PubMedCrossRefGoogle Scholar
  34. 34.
    Goulding A, Rockell JE, Black RE et al. (2004) Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc 104:250–253PubMedCrossRefGoogle Scholar
  35. 35.
    Teegarden D, Lyle RM, Proulx WR et al. (1999) Previous milk consumption is associated with greater bone density in young women. The American journal of clinical nutrition 69:1014–1017PubMedGoogle Scholar
  36. 36.
    Matkovic V, Landoll JD, Badenhop-Stevens NE et al. (2004) Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr 134:701S–705SPubMedGoogle Scholar
  37. 37.
    Wiley AS (2005) Does milk make children grow? Relationships between milk consumption and height in NHANES 1999–2002. Am J Hum Biol 17:425–441PubMedCrossRefGoogle Scholar
  38. 38.
    Orr J (1928) Milk consumption and the growth of school-children. Lancet 1:202–203CrossRefGoogle Scholar
  39. 39.
    Leighton G, Clark M (1929) Milk consumption and the growth of school-children. Lancet 1:40–43CrossRefGoogle Scholar
  40. 40.
    Baker IA, Elwood PC, Hughes J et al. (1980) A randomised controlled trial of the effect of the provision of free school milk on the growth of children. J Epidemiol Community Health 34:31–34PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cheng S, Lyytikainen A, Kroger H et al. (2005) Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10–12-y-old girls: a 2-y randomized trial. The American journal of clinical nutrition 82:1115–1126; quiz 1147–1118PubMedGoogle Scholar
  42. 42.
    Du X, Zhu K, Trube A et al. (2005) Effects of school-milk intervention on growth and bone mineral accretion in Chinese girls aged 10–12 years: accounting for cluster randomisation. Br J Nutr 94:1038–1039PubMedCrossRefGoogle Scholar
  43. 43.
    Du X, Zhu K, Trube A et al. (2004) School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr 92:159–168PubMedCrossRefGoogle Scholar
  44. 44.
    Ho SC, Guldan GS, Woo J et al. (2005) A prospective study of the effects of 1-year calcium-fortified soy milk supplementation on dietary calcium intake and bone health in Chinese adolescent girls aged 14 to 16. Osteoporos Int 16:1907–1916PubMedCrossRefGoogle Scholar
  45. 45.
    Lau EM, Kwok T, Woo J et al. (1998) Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. Eur J Clin Nutr 52:60–64PubMedCrossRefGoogle Scholar
  46. 46.
    Merrilees MJ, Smart EJ, Gilchrist NL et al. (2000) Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 39:256–262PubMedCrossRefGoogle Scholar
  47. 47.
    Volek JS, Gomez AL, Scheett TP et al. (2003) Increasing fluid milk favorably affects bone mineral density responses to resistance training in adolescent boys. J Am Diet Assoc 103:1353–1356PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Q, Ma GS, Greenfield H et al. (2003) Effects of fortified milk consumption on regional bone mineral accrual in Chinese girls. Asia Pac J Clin Nutr 12(Suppl):S46Google Scholar
  49. 49.
    Zhu K, Du X, Cowell CT et al. (2005) Effects of school milk intervention on cortical bone accretion and indicators relevant to bone metabolism in Chinese girls aged 10–12 y in Beijing. The American journal of clinical nutrition 81:1168–1175PubMedGoogle Scholar
  50. 50.
    Zhu K, Greenfield H, Du X et al. (2003) Effects of milk supplementation on cortical bone gain in Chinese girls aged 10–12 years. Asia Pac J Clin Nutr 12(Suppl):S47Google Scholar
  51. 51.
    Zhu K, Greenfield H, Zhang Q et al. (2004) Bone mineral accretion and growth in Chinese adolescent girls following the withdrawal of school milk intervention: preliminary results after two years. Asia Pac J Clin Nutr 13:S83Google Scholar
  52. 52.
    Zhu K, Zhang Q, Foo LH et al. (2006) Growth, bone mass, and vitamin D status of Chinese adolescent girls 3 y after withdrawal of milk supplementation. The American journal of clinical nutrition 83:714–721PubMedGoogle Scholar
  53. 53.
    Layne JE, Nelson ME (1999) The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc 31:25–30PubMedCrossRefGoogle Scholar
  54. 54.
    Bass SL, Saxon L, Daly RM et al. (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280PubMedCrossRefGoogle Scholar
  55. 55.
    Martin X, Farpour-Lambert N, Chevalley T et al. (2007) Long-distance runners have greater cortical thickness of distal tibia but not of distal radius. J Bone Miner Res 22(Suppl):S349Google Scholar
  56. 56.
    Chevalley T, Bonjour JP, Ferrari S et al. (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2008

Personalised recommendations