Osteoporosis International

, Volume 19, Issue 6, pp 829–837

Large-scale association study between two coding LRP5 gene polymorphisms and bone phenotypes and fractures in men

  • E. Grundberg
  • E. M. Lau
  • M. Lorentzson
  • M. Karlsson
  • A. Holmberg
  • L. Groop
  • D. Mellström
  • E. Orwoll
  • H. Mallmin
  • C. Ohlsson
  • Ö. Ljunggren
  • K. Åkesson
Original Article



Herein we investigated the association between polymorphisms in the LRP5 gene and bone phenotypes and fractures in three large male cohorts based on the rationale that mutations in LRP5 cause severe bone phenotypes. Results showed an association of the Val667Met SNP with spine BMD in 3,800 young and elderly men.


The low-density lipoprotein receptor-related protein 5 (LRP5)-Wnt signalling system is of importance for regulating osteoblastic activity, which became clear after findings that inactivating mutations in LRP5 cause osteoporosis. The overall aim of this study was to investigate the association between polymorphisms in the LRP5 gene and bone mineral density (BMD) in three large cohorts of young and elderly men.


The cohorts used were MrOS Sweden (n = 3014, aged 69–81 years) and MrOs Hong Kong (n = 2000, aged  > 65 years) and the Swedish GOOD study (n = 1068, aged 18–20 years). The polymorphisms Val667Met and Ala1330Val were genotyped using a TaqMan assay.


When combining the data from the Swedish cohorts in a meta-analysis (n = 3,800), men carrying the 667Met-allele had 3% lower BMD at lumbar spine compared with non-carriers (p < 0.05). The Val667Met SNP was not polymorphic in the Hong Kong population and thus were not included. There were no associations between the Ala1330Val SNP and bone phenotypes in the study populations. No associations between the LRP5 polymorphisms and self-reported fractures were seen in MrOs Sweden.


Results from these three large cohorts indicate that the Val667Met polymorphism but not the Ala1330Val contributes to the observed variability in BMD in the Swedish populations.


BMD Fracture risk LRP5 Polymorphism Population-based 


  1. 1.
    Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523CrossRefPubMedGoogle Scholar
  2. 2.
    Van Wesenbeeck L, Cleiren E, Gram J et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) fsgene in different conditions with an increased bone density. Am J Hum Genet 72:763–771CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boyden LM, Mao J, Belsky J et al (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521CrossRefPubMedGoogle Scholar
  4. 4.
    Little RD, Carulli JP, Del Mastro RG et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19CrossRefPubMedGoogle Scholar
  5. 5.
    Evans RA, Marel GM, Lancaster EK et al (1988) Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 109:870–873CrossRefPubMedGoogle Scholar
  6. 6.
    Pocock NA, Eisman JA, Hopper JL et al (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Slemenda CW, Christian JC, Williams CJ et al (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567CrossRefPubMedGoogle Scholar
  8. 8.
    Ioannidis JP, Ralston SH, Bennett ST et al (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. Jama 292:2105–2114CrossRefPubMedGoogle Scholar
  9. 9.
    Ralston SH, Uitterlinden AG, Brandi ML et al (2006) Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med 3:e90Google Scholar
  10. 10.
    Uitterlinden AG, Ralston SH, Brandi ML et al (2006) The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern Med 145:255–264CrossRefPubMedGoogle Scholar
  11. 11.
    Ioannidis JP, Ntzani EE, Trikalinos TA et al (2001) Replication validity of genetic association studies. Nat Genet 29:306–309CrossRefPubMedGoogle Scholar
  12. 12.
    Ioannidis JP, Trikalinos TA, Ntzani EE et al (2003) Genetic associations in large versus small studies: an empirical assessment. Lancet 361:567–571CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrari SL, Deutsch S, Choudhury U et al (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Twells RC, Mein CA, Phillips MS et al (2003) Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res 13:845–855CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Koay MA, Woon PY, Zhang Y et al (2004) Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 19:1619–1627CrossRefPubMedGoogle Scholar
  16. 16.
    van Meurs JB, Rivadeneira F, Jhamai M et al (2006) Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J Bone Miner Res 21:141–150CrossRefPubMedGoogle Scholar
  17. 17.
    Lorentzon M, Swanson C, Eriksson AL et al (2006) Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res 21:332–339CrossRefPubMedGoogle Scholar
  18. 18.
    Hui SL, Gao S, Zhou XH et al (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470CrossRefPubMedGoogle Scholar
  19. 19.
    Lu Y, Fuerst T, Hui S et al (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 12:438–444CrossRefPubMedGoogle Scholar
  20. 20.
    (1995) Standardization of spine BMD measurements. J Bone Miner Res 10:1602–1603Google Scholar
  21. 21.
    Dupont WD, Plummer Jr. WD (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601CrossRefPubMedGoogle Scholar
  22. 22.
    Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  23. 23.
    Koller DL, Ichikawa S, Johnson ML et al (2005) Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 20:75–80CrossRefPubMedGoogle Scholar
  24. 24.
    Okubo M, Horinishi A, Kim DH et al (2002) Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene. Hum Mutat 19:186CrossRefPubMedGoogle Scholar
  25. 25.
    Saarinen A, Valimaki VV, Valimaki MJ et al (2007) The A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. Bone 40:1006–1012CrossRefPubMedGoogle Scholar
  26. 26.
    Ezura Y, Nakajima T, Urano T et al (2007) Association of a single-nucleotide variation (A1330V) in the low-density lipoprotein receptor-related protein 5 gene (LRP5) with bone mineral density in adult Japanese women. Bone 40:997–1005CrossRefPubMedGoogle Scholar
  27. 27.
    Koay MA, Tobias JH, Leary SD et al (2007) The effect of LRP5 polymorphisms on bone mineral density is apparent in childhood. Calcif Tissue Int 81:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kiel DP, Ferrari SL, Cupples LA et al (2007) Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone 40:587–596CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong DH, Lei SF, Yang F et al (2007) Low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms are associated with bone mass in both Chinese and whites. J Bone Miner Res 22:385–393CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • E. Grundberg
    • 1
  • E. M. Lau
    • 2
  • M. Lorentzson
    • 3
  • M. Karlsson
    • 4
    • 5
  • A. Holmberg
    • 4
    • 5
  • L. Groop
    • 6
  • D. Mellström
    • 3
  • E. Orwoll
    • 7
  • H. Mallmin
    • 8
  • C. Ohlsson
    • 3
  • Ö. Ljunggren
    • 1
  • K. Åkesson
    • 4
    • 5
  1. 1.Department of Medical SciencesUppsala University HospitalUppsalaSweden
  2. 2.Hong Kong Orthopedic and Osteoporosis Center for Treatment and researchHong KongChina
  3. 3.Center for Bone Research at the Sahlgrenska Academy, Department of Internal MedicineGöteborg UniversityGothenburgSweden
  4. 4.Clinical and Molecular Osteoporosis Research Unit, Department of Clinical ScienceLund UniversityMalmöSweden
  5. 5.Department of OrthopaedicsMalmö University HospitalMalmöSweden
  6. 6.Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research CenterMalmö University Hospital, Lund UniversityMalmöSweden
  7. 7.Bone and Mineral Research UnitOregon Health and Science UniversityPortlandUSA
  8. 8.Department of Surgical SciencesUppsala University HospitalUppsalaSweden

Personalised recommendations