Osteoporosis International

, Volume 19, Issue 5, pp 625–635

Skeletal deterioration induced by RANKL infusion: a model for high-turnover bone disease

  • Y. Y. Yuan
  • P. J. Kostenuik
  • M. S. Ominsky
  • S. Morony
  • S. Adamu
  • D. T. Simionescu
  • D. M. Basalyga
  • F. J. Asuncion
  • T. A. Bateman
Original Article

Abstract

Summary

RANKL was administered continuously to rats for 28 days to investigate its potential as a disease model for the skeletal system. Bone turnover rates, bone material, structural and mechanical properties were evaluated. RANKL infusion caused overall skeletal complications comparable to those in high bone-turnover conditions, such as postmenopausal osteoporosis.

Introduction

RANKL is an essential mediator for osteoclast development. No study has examined in detail the direct skeletal consequences of excess RANKL on bone turnover, mineralization, architecture, and vascular calcification. We, therefore, administrated soluble RANKL continuously into mature rats and created a bone-loss model.

Methods

Six-month-old Sprague-Dawley (SD) rats were assigned to three groups (n = 12) receiving continuous administration of saline (VEH) or human RANKL (35 μg/kg/day, LOW or 175 μg/kg/day, HI) for 28 days. Blood was collected routinely during the study. At sacrifice, hind limbs and aorta were removed and samples were analyzed.

Results

High dose RANKL markedly stimulated serum osteocalcin and TRAP-5b levels and reduced femur cortical bone volume (−7.6%) and trabecular volume fraction (BV/TV) at the proximal tibia (−64% vs. VEH). Bone quality was significantly degraded in HI, as evidenced by decreased femoral percent mineralization, trabecular connectivity, and increased endocortical bone resorption perimeters. Both cortical and trabecular bone mechanical properties were reduced by high dose RANKL. No differences were observed in the mineral content of the abdominal aorta.

Conclusions

Continuous RANKL infusion caused general detrimental effects on rat skeleton. These changes are comparable to those commonly observed in high-turnover bone diseases such as postmenopausal osteoporosis.

Keywords

Bone Diseases Model Osteoporosis RANKL Resorption 

References

  1. 1.
    Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. Jama 292:490–495PubMedCrossRefGoogle Scholar
  2. 2.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594PubMedCrossRefGoogle Scholar
  3. 3.
    Blair JM, Zhou H, Seibel MJ et al (2006) Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 3:41–49PubMedCrossRefGoogle Scholar
  4. 4.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508PubMedCrossRefGoogle Scholar
  5. 5.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342PubMedCrossRefGoogle Scholar
  6. 6.
    Suda T, Takahashi N, Udagawa N et al (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357PubMedCrossRefGoogle Scholar
  7. 7.
    Zaidi M, Blair HC, Moonga BS et al (2003) Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics. J Bone Miner Res 18:599–609PubMedCrossRefGoogle Scholar
  8. 8.
    Fuller K, Wong B, Fox S et al (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001PubMedCrossRefGoogle Scholar
  9. 9.
    Eghbali-Fatourechi G, Khosla S, Sanyal A et al (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230PubMedGoogle Scholar
  10. 10.
    Anderson DM, Maraskovsky E, Billingsley WL et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179PubMedCrossRefGoogle Scholar
  11. 11.
    Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRefGoogle Scholar
  12. 12.
    Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCrossRefGoogle Scholar
  13. 13.
    Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRefGoogle Scholar
  14. 14.
    Tsuda E, Goto M, Mochizuki S et al (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142PubMedCrossRefGoogle Scholar
  15. 15.
    Nagai M, Sato N (1999) Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun 257:719–723PubMedCrossRefGoogle Scholar
  16. 16.
    Fazzalari NL, Kuliwaba JS, Atkins GJ et al (2001) The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 16:1015–1027PubMedCrossRefGoogle Scholar
  17. 17.
    Grimaud E, Soubigou L, Couillaud S et al (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163:2021–2031PubMedGoogle Scholar
  18. 18.
    Haynes DR, Crotti TN, Loric M et al (2001) Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology (Oxford) 40:623–630CrossRefGoogle Scholar
  19. 19.
    Kong YY, Feige U, Sarosi I et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309PubMedCrossRefGoogle Scholar
  20. 20.
    Stolina M, Adamu S, Ominsky M et al (2005) RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res 20:1756–1765PubMedCrossRefGoogle Scholar
  21. 21.
    Giuliani N, Bataille R, Mancini C et al (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533PubMedCrossRefGoogle Scholar
  22. 22.
    Standal T, Seidel C, Hjertner O et al (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100:3002–3007PubMedCrossRefGoogle Scholar
  23. 23.
    Michigami T, Ihara-Watanabe M, Yamazaki M et al (2001) Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res 61:1637–1644PubMedGoogle Scholar
  24. 24.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRefGoogle Scholar
  25. 25.
    Fuller K, Gallagher AC, Chambers TJ (1991) Osteoclast resorption-stimulating activity is associated with the osteoblast cell surface and/or the extracellular matrix. Biochem Biophys Res Commun 181:67–73PubMedCrossRefGoogle Scholar
  26. 26.
    Ikeda T, Kasai M, Utsuyama M et al (2001) Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426PubMedCrossRefGoogle Scholar
  27. 27.
    Suzuki J, Ikeda T, Kuroyama H et al (2004) Regulation of osteoclastogenesis by three human RANKL isoforms expressed in NIH3T3 cells. Biochem Biophys Res Commun 314:1021–1027PubMedCrossRefGoogle Scholar
  28. 28.
    Avbersek-Luznik I, Balon BP, Rus I et al (2005) Increased bone resorption in HD patients: is it caused by elevated RANKL synthesis? Nephrol Dial Transplant 20:566–570PubMedCrossRefGoogle Scholar
  29. 29.
    Geusens PP, Landewe RB, Garnero P et al (2006) The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 54:1772–1777PubMedCrossRefGoogle Scholar
  30. 30.
    Morabito N, Gaudio A, Lasco A et al (2004) Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res 19:722–727PubMedCrossRefGoogle Scholar
  31. 31.
    Abrahamsen B, Hjelmborg JV, Kostenuik P et al (2005) Circulating amounts of osteoprotegerin and RANK ligand: genetic influence and relationship with BMD assessed in female twins. Bone 36:727–735PubMedCrossRefGoogle Scholar
  32. 32.
    Min H, Morony S, Sarosi I et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474PubMedCrossRefGoogle Scholar
  33. 33.
    Broz JJ, Simske SJ, Greenberg AR et al (1993) Effects of rehydration state on the flexural properties of whole mouse long bones. J Biomech Eng 115:447–449PubMedCrossRefGoogle Scholar
  34. 34.
    Ross AB, Bateman TA, Kostenuik PJ et al (2001) The effects of osteoprotegerin on the mechanical properties of rat bone. J Mater Sci Mater Med 12:583–588PubMedCrossRefGoogle Scholar
  35. 35.
    Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  36. 36.
    Stilgren LS, Hegedus LM, Beck-Nielsen H et al (2003) Osteoprotegerin levels in primary hyperparathyroidism: effect of parathyroidectomy and association with bone metabolism. Calcif Tissue Int 73:210–216PubMedCrossRefGoogle Scholar
  37. 37.
    Stilgren LS, Rettmer E, Eriksen EF et al (2004) Skeletal changes in osteoprotegerin and receptor activator of nuclear factor-kappab ligand mRNA levels in primary hyperparathyroidism: effect of parathyroidectomy and association with bone metabolism. Bone 35:256–265PubMedCrossRefGoogle Scholar
  38. 38.
    Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465PubMedCrossRefGoogle Scholar
  39. 39.
    Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104PubMedCrossRefGoogle Scholar
  40. 40.
    Bucay N, Sarosi I, Dunstan CR et al (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCrossRefGoogle Scholar
  41. 41.
    Abdallah BM, Stilgren LS, Nissen N et al (2005) Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int 76:90–97PubMedCrossRefGoogle Scholar
  42. 42.
    Beck TJ, Miller PD, Lewiecki EM (2006) Denosumab improves the structural geometry of the proximal femur in postmenopausal women with low bone mass. J Bone Min Res 21:S71 (Abstract)CrossRefGoogle Scholar
  43. 43.
    McClung MR, Lewiecki EM, Cohen SB et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831PubMedCrossRefGoogle Scholar
  44. 44.
    Body JJ, Facon T, Coleman RE et al (2006) A study of the biological receptor activator of nuclear factor-{kappa}B ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12:1221–1228PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • Y. Y. Yuan
    • 1
  • P. J. Kostenuik
    • 2
  • M. S. Ominsky
    • 2
  • S. Morony
    • 2
  • S. Adamu
    • 2
  • D. T. Simionescu
    • 1
  • D. M. Basalyga
    • 1
  • F. J. Asuncion
    • 2
  • T. A. Bateman
    • 1
  1. 1.Department of BioengineeringClemson UniversityClemsonUSA
  2. 2.Metabolic Disorders, Amgen Inc.Thousand OaksUSA

Personalised recommendations