Osteoporosis International

, Volume 19, Issue 6, pp 793–800

Comparative effects of 17β-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice

  • A. Cano
  • S. Dapía
  • I. Noguera
  • B. Pineda
  • C. Hermenegildo
  • R. del Val
  • J. R. Caeiro
  • M. A. García-Pérez
Original Article



This study assessed the effect of estradiol, raloxifene and genistein on the preservation of bone 3D-microarchitecture and volumetric bone mineral density (vBMD) in the ovariectomized mouse model. Our results indicated that raloxifene was more effective in preserving bone ovariectomized-induced changes, the advantage being concentrated in both bone microarchitecture and vBMD.


This study assessed the effect of different estrogen receptor (ER) agonists on the preservation of bone 3D-microarchitecture and volumetric bone mineral density (vBMD) in the ovariectomized (OVX) mouse model.


Twelve-week-old female C57BL/6 mice were randomly assigned to one of five groups: (1) SHAM-operated + vehicle; (2) OVX + vehicle; (3) OVX + 17β-estradiol (5 μg/kg); (4) OVX + raloxifene (1 mg/kg); (5) OVX + genistein (25 mg/kg), during 4-weeks. Bone microarchitecture and trabecular, cortical and total vBMD of distal femur were imaged by ex vivo microcomputed tomography (micro-CT).


Ovariectomy produced a global deterioration involving both trabecular and cortical 3D-microarchitecture and vBMD. Raloxifene maintained both microarchitecture and vBMD, whereas estradiol prevented deterioration of some microstructural parameters, such as trabecular thickness (Tb.Th), trabecular bone pattern factor (Tb.Pf), and cortical periosteal perimeter (Ct.Pe.Pm), but did not completely block the loss in vBMD. Mice treated with genistein exhibited the less favourable profile in both vBMD and microstructural parameters preserving only cross-sectional bone area (B.Ar) and Ct.Pe.Pm in cortical bone.


Our data indicate that, at the selected doses, raloxifene was more effective in preserving bone OVX-induced changes than either estradiol or genistein, the advantage being concentrated in both bone microarchitecture and vBMD.


Genistein Osteoporosis Raloxifene Three-dimensional microarchitecture 17β-estradiol 


  1. 1.
    Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686CrossRefPubMedGoogle Scholar
  2. 2.
    Riggs BL, Khosla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773CrossRefPubMedGoogle Scholar
  3. 3.
    Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMedGoogle Scholar
  4. 4.
    Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333CrossRefPubMedGoogle Scholar
  5. 5.
    Hendrix SL, Wassertheil-Smoller S, Johnson KC et al (2006) Effects of conjugated equine estrogen on stroke in the Women’s Health Initiative. Circulation 113:2425–2434CrossRefPubMedGoogle Scholar
  6. 6.
    Marin F, Barbancho MC (2006) Clinical pharmacology of selective estrogen receptor modulators (SERMs). In: Cano A, Calaf J, Alsina I, Dueñas-Diez JL (eds) Selective estrogen receptor modulators. New brand of multitarget drugs. Springer, Berlin Heidelberg New York, pp 49–69CrossRefGoogle Scholar
  7. 7.
    Delmas PD, Bjarnason NH, Mitlak BH et al (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337:1641–1647CrossRefPubMedGoogle Scholar
  8. 8.
    Cummings SR, Eckert S, Krueger KA et al (1999) The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple outcomes of raloxifene evaluation. JAMA 281:2189–2197CrossRefPubMedGoogle Scholar
  9. 9.
    Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263PubMedGoogle Scholar
  10. 10.
    An J, Tzagarakis-Foster C, Scharschmidt TC et al (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814CrossRefPubMedGoogle Scholar
  11. 11.
    Crisafulli A, Altavilla D, Squadrito G et al (2004) Effects of the phytoestrogen genistein on the circulating soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin system in early postmenopausal women. J Clin Endocrinol Metab 89:188–192CrossRefPubMedGoogle Scholar
  12. 12.
    Crisafulli A, Altavilla D, Marini H et al (2005) Effects of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women. Menopause 12:186–192CrossRefPubMedGoogle Scholar
  13. 13.
    Lane NE, Thompson JM, Haupt D et al (1998) Acute changes in trabecular bone connectivity and osteoclast activity in the ovariectomized rat in vivo. J Bone Miner Res 13:229–236CrossRefPubMedGoogle Scholar
  14. 14.
    Sato M, Rippy MK, Bryant HU (1996) Raloxifene, tamoxifen, nafoxidine, or estrogen effects on reproductive and nonreproductive tissues in ovariectomized rats. FASEB J 10:905–912PubMedGoogle Scholar
  15. 15.
    Harris DM, Besselink E, Henning SM et al (2005) Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp Biol Med (Maywood) 230:558–568Google Scholar
  16. 16.
    Black LJ, Sato M, Rowley ER et al (1994) Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cenci S, Weitzmann MN, Roggia C et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Erlandsson MC, Jonsson CA, Lindberg MK et al (2002) Raloxifene- and estradiol-mediated effects on uterus, bone and B lymphocytes in mice. J Endocrinol 175:319–327CrossRefPubMedGoogle Scholar
  19. 19.
    Ishimi Y, Miyaura C, Ohmura M et al (1999) Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140:1893–1900PubMedGoogle Scholar
  20. 20.
    Modder UI, Riggs BL, Spelsberg TC et al (2004) Dose-response of estrogen on bone versus the uterus in ovariectomized mice. Eur J Endocrinol 151:503–510CrossRefPubMedGoogle Scholar
  21. 21.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRefGoogle Scholar
  22. 22.
    Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  23. 23.
    Ulrich D, van RB, Laib A et al (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60CrossRefPubMedGoogle Scholar
  24. 24.
    Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23CrossRefGoogle Scholar
  25. 25.
    Harrigan TP, Mann RW (1984) Characterisation of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767CrossRefGoogle Scholar
  26. 26.
    Hahn M, Vogel M, Pompesius-Kempa M et al (1992) Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330CrossRefPubMedGoogle Scholar
  27. 27.
    Allen MR, Iwata K, Sato M et al (2006) Raloxifene enhances vertebral mechanical properties independent of bone density. Bone 39:1130–1135CrossRefPubMedGoogle Scholar
  28. 28.
    Andersson N, Islander U, Egecioglu E et al (2005) Investigation of central versus peripheral effects of estradiol in ovariectomized mice. J Endocrinol 187:303–309CrossRefPubMedGoogle Scholar
  29. 29.
    Devareddy L, Khalil DA, Smith BJ et al (2006) Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis. Bone 38:686–693CrossRefPubMedGoogle Scholar
  30. 30.
    Prestwood KM, Kenny AM, Kleppinger A et al (2003) Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 290:1042–1048CrossRefPubMedGoogle Scholar
  31. 31.
    Delmas PD, Bjarnason NH, Mitlak BH et al (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337:1641–1647CrossRefPubMedGoogle Scholar
  32. 32.
    McNamara LM, Ederveen AG, Lyons CG et al (2006) Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Perez MA, Del Val R, Noguera I et al (2006) Estrogen receptor agonists and immune system in ovariectomized mice. Int J Immunopathol Pharmacol 19:807–819PubMedGoogle Scholar
  34. 34.
    Ishimi Y, Arai N, Wang X et al (2000) Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274:697–701CrossRefPubMedGoogle Scholar
  35. 35.
    Wu J, Wang XX, Takasaki M et al (2001) Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res 16:1829–1836CrossRefPubMedGoogle Scholar
  36. 36.
    Garcia-Perez MA, Noguera R, Del Val R et al (2006) Comparative effects of estradiol, raloxifene, and genistein on the uterus of ovariectomized mice. Fertil Steril 86:1003–1005CrossRefPubMedGoogle Scholar
  37. 37.
    Newbold RR, Banks EP, Bullock B et al (2001) Uterine adenocarcinoma in mice treated neonatally with genistein. Cancer Res 61:4325–4328PubMedGoogle Scholar
  38. 38.
    Unfer V, Casini ML, Costabile L et al (2004) Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril 82:145–148CrossRefPubMedGoogle Scholar
  39. 39.
    Hotchkiss CE, Weis C, Blaydes B et al (2005) Multigenerational exposure to genistein does not increase bone mineral density in rats. Bone 37:720–727CrossRefPubMedGoogle Scholar
  40. 40.
    Fanti P, Monier-Faugere MC, Geng Z et al (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8:274–281CrossRefPubMedGoogle Scholar
  41. 41.
    Somerville JM, Aspden RM, Armour KE et al (2004) Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif Tissue Int 74:469–475CrossRefPubMedGoogle Scholar
  42. 42.
    Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators - mechanisms of action and application to clinical practice. N Engl J Med 348:618–629CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • A. Cano
    • 1
  • S. Dapía
    • 2
  • I. Noguera
    • 3
  • B. Pineda
    • 4
  • C. Hermenegildo
    • 4
    • 5
  • R. del Val
    • 4
  • J. R. Caeiro
    • 6
  • M. A. García-Pérez
    • 4
    • 7
  1. 1.Department of Pediatrics, Obstetrics and GynecologyUniversity of ValenciaValenciaSpain
  2. 2.Trabeculae, Empresa de Base Tecnológica S.L.Parque Tecnológico de GaliciaOurenseSpain
  3. 3.Research Unit, Faculty of MedicineUniversity of ValenciaValenciaSpain
  4. 4.Research FoundationHospital Clínico UniversitarioValenciaSpain
  5. 5.Department of PhysiologyUniversity of ValenciaValenciaSpain
  6. 6.Trauma and Orthopedic Surgery ServiceComplexo Hospitalario UniversitarioSantiago de CompostelaSpain
  7. 7.Department of GeneticsUniversity of ValenciaValenciaSpain

Personalised recommendations