Osteoporosis International

, Volume 19, Issue 7, pp 905–912 | Cite as

Leptin and the sympathetic connection of fat to bone

Review

Abstract

Loss of body weight is associated with bone loss, and body weight gain is associated with increased bone formation. The molecular mechanisms linking body weight, body composition, and bone density are now better understood. Lean mass is likely to have a significant, local effect on bone modeling and remodeling through mechanotransduction pathways. In contrast to the local regulation of bone formation and resorption by muscle-derived stimuli, peripheral body fat appears to influence bone mass via secretion of systemic, endocrine factors that link body weight to bone density even in non-weight bearing regions (e.g., the forearm). The cytokine-like hormone leptin, which is secreted by fat cells, is an important candidate molecule linking changes in body composition with bone formation and bone resorption. Increases in body fat increase leptin levels and stimulate periosteal bone formation through its direct anabolic effects on osteoblasts, and through central (CNS) effects including the stimulation of the GH-IGF-1 axis and suppression of neuropeptide Y, a powerful inhibitor of bone formation. Stimulation of beta2-adrenergic receptors through central (hypothalamic) leptin receptors does, however, increase remodeling of trabecular bone, resulting in a lower cancellous bone volume that may be better adapted to a concomitantly larger cortical bone compartment. These findings suggest that body weight and body fat can regulate bone mass and structure through molecular pathways that are independent of load-bearing. Furthermore, pharmacological manipulation of the signaling pathways activated by leptin may have significant potential for the treatment and prevention of bone loss.

Keywords

Adipogenesis Beta-adrenergic receptor Body weight Bone mass Leptin receptor 

References

  1. 1.
    Rauch F, Bailey D, Baxter-Jones A et al (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34:771–775PubMedCrossRefGoogle Scholar
  2. 2.
    Greenlund LJ, Nair KS (2003) Sarcopenia-consequences, mechanisms, and potential therapies. Mech Ageing Dev 124:287–299PubMedCrossRefGoogle Scholar
  3. 3.
    Huang R, Rubin C, McLeod K (1999) Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci 54:B352–357PubMedGoogle Scholar
  4. 4.
    Eisman J (2001) Good, good, good...good vibrations: the best option for better bones? Lancet 358:1924–1925PubMedCrossRefGoogle Scholar
  5. 5.
    Schoenau E (2005) From mechanostat theory to development of the “Functional Muscle-Bone Unit”. J Musculoskelet Neuronal Interact 5:232–238PubMedGoogle Scholar
  6. 6.
    Qin Y, Lam H, Orzechowski L, Xia Y (2005) Bone fluid flow induced by skeletal muscle dynamics and its role in bone adaptation. J Bone Miner Res 20(Suppl 1):F185Google Scholar
  7. 7.
    Galvard H, Elmstahl S, Elmstahl B et al (1996) Differences in body composition between female geriatric hip fracture patients and healthy controls: body fat is more important as an explanatory factor for the fracture than body weight and lean body mass. Aging Clin Exp Res 8:282–286Google Scholar
  8. 8.
    Reid I, Ames R, Evans M, Sharpe S, Gamble G, France J, Lim T, Cundy T (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women-a key role for fat mass. J Clin Endocrinol Metab 75:45–51PubMedCrossRefGoogle Scholar
  9. 9.
    Fogelholm G, Sievänen H, Kukkonen-Harjula T, Pasanen M (2001) Bone mineral density during reduction, maintenance, and regain of body weight in premenopausal, obese women. Osteoporos Int 12:199–206PubMedCrossRefGoogle Scholar
  10. 10.
    Grodin J, Siiteri P, MacDonald P (1973) Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab 36:207–214PubMedCrossRefGoogle Scholar
  11. 11.
    Reid I (2002) Relationships among body mass, its components, and bone. Bone 13:547–555CrossRefGoogle Scholar
  12. 12.
    Berner H, Lyngstadaas S, Spahr A et al (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849PubMedCrossRefGoogle Scholar
  13. 13.
    Jürimäe J, Jürimäe T (2007) Adiponectin is a predictor of bone mineral density in middle- aged premenopausal women. Osteoporos Int [Mar 30 ePub ahead of print]Google Scholar
  14. 14.
    Reid I, Cornish J, Baldock P (2006) Nutrition-related peptides and bone homeostasis. J Bone Miner Res 21:495–500PubMedCrossRefGoogle Scholar
  15. 15.
    Hamrick MW (2007) Invited perspective: leptin and bone-a consensus emerging? BoneKey-Osteovision 4:99–107Google Scholar
  16. 16.
    Flier J (1998) What’s in a name? In search of leptin’s physiologic role. J Clin Endocrinol Metab 83:1407–1413PubMedCrossRefGoogle Scholar
  17. 17.
    Soyka L, Grinspoon S, Levitsky L et al (1999) The effects of anorexia nervosa on bone metabolism in female adolescents. J Clin Endocrinol Metab 84:4489–4496PubMedCrossRefGoogle Scholar
  18. 18.
    Mantzoros CS (2000) Role of leptin in reproduction. Ann N Y Acad Sci 900:174–183PubMedCrossRefGoogle Scholar
  19. 19.
    Frisch R, Revelle R (1970) Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169:397–399PubMedCrossRefGoogle Scholar
  20. 20.
    Matkovic V, Ilich J, Skugor M et al (1997) Leptin is inversely related to age at menarche in human females. J Clin Endocrinol Metab 82:3239–3245PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenthal D, Mayo-Smith W, Hayes C et al (1989) Age and bone mass in premenopausal women. J Bone Miner Res 4:533–538PubMedCrossRefGoogle Scholar
  22. 22.
    Bonjour J-P, Chevalley T (2007) Pubertal timing, peak bone mass and fragility fracture risk. BoneKEy-Osteovision 4:30–48Google Scholar
  23. 23.
    Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541PubMedCrossRefGoogle Scholar
  24. 24.
    Chehab F, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12:318–320PubMedCrossRefGoogle Scholar
  25. 25.
    Carro E, Senaris R, Considine R, Casanueva F, Dieguez C (1997) Regulation of in vivo growth hormone secretion by leptin. Endocrinology 138:2203–2206PubMedCrossRefGoogle Scholar
  26. 26.
    Gat-Yablonski G, Ben-Ari T, Shaif B et al (2004) Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 145:343–350PubMedCrossRefGoogle Scholar
  27. 27.
    Welt C, Chan J, Bullen J et al (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351:987–997PubMedCrossRefGoogle Scholar
  28. 28.
    Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 55:341–347CrossRefGoogle Scholar
  29. 29.
    Thomas T, Burguera B, Melton L et al (2001) Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114–120PubMedCrossRefGoogle Scholar
  30. 30.
    Blain H, Vuillemin A, Guillemin F et al (2002) Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 87:1030–1035PubMedCrossRefGoogle Scholar
  31. 31.
    Weiss L, Barrett-Connor E, von Muhlen D, Clark P (2006) Leptin predicts BMD and one resorption in older women but not older men: the Rancho-Bernardo study. J Bone Miner Res 21:758–764PubMedCrossRefGoogle Scholar
  32. 32.
    Lorentzon M, Landin K, Mellström D, Ohlsson C (2006) Leptin is a negative independent predictor of areal BMD and cortical bone size in young adult Swedish men. J Bone Miner Res 21:1871–1878PubMedCrossRefGoogle Scholar
  33. 33.
    Martin A, David V, Malaval L et al (2007) Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-1 pathway. Endocrinology 148:3419–3425PubMedCrossRefGoogle Scholar
  34. 34.
    Considine RV, Considine EL, Williams CJ et al (1996) The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations. Diabetes 45:992–994PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuoka N, Ogawa Y, Hosoda K et al (1997) Human leptin receptor gene in obese Japanese subjects: evidence against either obesity-causing mutations or association of sequence variants with obesity. Diabetologia 40:1204–1210PubMedCrossRefGoogle Scholar
  36. 36.
    Chung WK, Power-Kehoe L, Chua M et al (1997) Exonic and intronic sequence variation in the human leptin receptor gene (LEPR). Diabetes 46:1509–1511PubMedGoogle Scholar
  37. 37.
    Quinton ND, Lee AJ, Ross RJ, Eastell R, Blakemore AI (2001) A single nucleotide polymorphism (SNP) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women. Hum Genet 108:233–236PubMedCrossRefGoogle Scholar
  38. 38.
    Chagnon YC, Wilmore JH, Borecki IB et al (2000) Associations between the leptin receptor gene and adiposity in middle-aged Caucasian males from the HERITAGE family study. J Clin Endocrinol Metab 85:29–34PubMedCrossRefGoogle Scholar
  39. 39.
    Fairbrother UL, Tanko LB, Walley AJ et al (2007) Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J Bone Miner Res 22:544–550PubMedCrossRefGoogle Scholar
  40. 40.
    Koh JM, Kim DJ, Hong JS et al (2002) Estrogen receptor alpha gene polymorphisms Pvu II and Xba I influence association between leptin receptor gene polymorphism (Gln223Arg) and bone mineral density in young men. Eur J Endocrinol 147:777–783PubMedCrossRefGoogle Scholar
  41. 41.
    Crabbe P, Goemaere S, Zmierczak H et al (2006) Are serum leptin and the Gln223Arg polymorphism of the leptin receptor determinants of bone homeostasis in elderly men? Eur J Endocrinol 154:707–714PubMedCrossRefGoogle Scholar
  42. 42.
    Richert L, Chevalley T, Manen D et al (2007) Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor. J Clin Endocrinol MetabGoogle Scholar
  43. 43.
    Thomas T (2004) The complex effects of leptin on bone metabolism through multiple pathways. Curr Opin Pharmacol 4:295–300PubMedCrossRefGoogle Scholar
  44. 44.
    Holloway WR, Collier FM, Aitken CJ et al (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209PubMedCrossRefGoogle Scholar
  45. 45.
    Burguera B, Hofbauer L, Thomas T et al (2001) Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142:3546–3553PubMedCrossRefGoogle Scholar
  46. 46.
    Thomas T, Gori F, Khosla S et al (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedCrossRefGoogle Scholar
  47. 47.
    Hess R, Pino A, Rios S, Fernandez M, Rodriguez J (2004) High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cellular Biochem 94:50–57CrossRefGoogle Scholar
  48. 48.
    Laharrague P, Larrouy D, Fontanilles AM (1998) High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J 12:747–752PubMedGoogle Scholar
  49. 49.
    Kim G, Hong J, Kim S et al (2003) Leptin induces apoptosis via ERK/cPLA2/Cytochrome c pathway in human bone marrow stromal cells. J Biol Chem 278:21920–21929PubMedCrossRefGoogle Scholar
  50. 50.
    Hamrick M, Della-Fera MA, Hartzell D, Choi Y-H, Baile CA (2007) Intrahypothalamic injections of leptin increase adipocyte apoptosis in peripheral fat pad and in bone marrow. Cell Tissue Res 327:133–141PubMedCrossRefGoogle Scholar
  51. 51.
    Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orthop Rel Res 80:147–154CrossRefGoogle Scholar
  52. 52.
    Kajkenova O, Lecka-Czernik F, Gubrij I et al (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12:1772–1779PubMedCrossRefGoogle Scholar
  53. 53.
    Justesen J, Stenderup K, Ebbesen E et al (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  54. 54.
    Verma S, Rajaratnam J, Denton J et al (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedCrossRefGoogle Scholar
  55. 55.
    Lazarenko O, Rzonca S, Hogue W et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRefGoogle Scholar
  56. 56.
    Schwartz A, Sellmeyer D, Vittinghoff D et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRefGoogle Scholar
  57. 57.
    Elmquist JK, Maratos-Flier E, Saper CB et al (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1:445–450PubMedCrossRefGoogle Scholar
  58. 58.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling A, Beil F, Shen J, Vinson C, Rueger J, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  59. 59.
    Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRefGoogle Scholar
  60. 60.
    Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383PubMedCrossRefGoogle Scholar
  61. 61.
    Baldock PA, Allison S, McDonald MM et al (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21:1600–1607PubMedCrossRefGoogle Scholar
  62. 62.
    Kellenberger S, Muller K, Richener H, Bilbe G (1998) Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 22:471–478PubMedCrossRefGoogle Scholar
  63. 63.
    Moore RE, Smith CK, II, Bailey CS, Voelkel EF, Tashjian AH, Jr (1993) Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner 23:301–315PubMedCrossRefGoogle Scholar
  64. 64.
    Suzuki A, Guicheux J, Palmer G et al (2002) Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone 30:91–98PubMedCrossRefGoogle Scholar
  65. 65.
    Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1998) Catecholamines stimulate the proliferation and alkaline phosphatase activity of MC3T3-E1 osteoblast-like cells. Bone 23:197–203PubMedCrossRefGoogle Scholar
  66. 66.
    Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRefGoogle Scholar
  67. 67.
    Togari A, Arai M, Mizutani S, Mizutani S, Koshihara Y, Nagatsu T (1997) Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett 233:125–128PubMedCrossRefGoogle Scholar
  68. 68.
    Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A (2003) Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 1640:137–142PubMedCrossRefGoogle Scholar
  69. 69.
    Togari A, Mogi M, Arai M, Yamamoto S, Koshihara Y (2000) Expression of mRNA for axon guidance molecules, such as semaphorin-III, netrins and neurotrophins, in human osteoblasts and osteoclasts. Brain Res 878:204–209PubMedCrossRefGoogle Scholar
  70. 70.
    Takeuchi T, Tsuboi T, Arai M, Togari A (2001) Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol 61:579–586PubMedCrossRefGoogle Scholar
  71. 71.
    Glatt V, Canalis E, Stadmeyer L, M Bouxsein (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22:1197–1207PubMedCrossRefGoogle Scholar
  72. 72.
    Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277PubMedCrossRefGoogle Scholar
  73. 73.
    Pierroz D, Muzzin P, Glatt V et al (2004) β1β2-adrenergic receptor ko mice have decreased total body and cortical bone mass despite increased trabecular bone number. J Bone Miner Res 19(supp 1):1121Google Scholar
  74. 74.
    Fu L, Patel M, Bradley A et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815PubMedCrossRefGoogle Scholar
  75. 75.
    Turek F, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045PubMedCrossRefGoogle Scholar
  76. 76.
    Gomez-Abellan P, Hernandez-Morante, Lujan J et al (2007) Clock genes are implicated in the human metabolic syndrome. Int J Obesity 1–8Google Scholar
  77. 77.
    Pierroz D, Bouxsein M, Cavat F et al (2006) Synergistic effects of adrenergic blockade and intermittent parathyroid hormone on bone in ovariectomized mice. Bone 39:260–267PubMedCrossRefGoogle Scholar
  78. 78.
    Bonnet N, Beaupied H, Vico L et al (2007) Combined effects of exercise and propranolol on bone tissue in ovariectomized rats. J Bone Miner Res 22:578–588PubMedCrossRefGoogle Scholar
  79. 79.
    Bonnet N, Laroche N, Vico L et al (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318:1118–1127PubMedCrossRefGoogle Scholar
  80. 80.
    Pierroz D, Bouxsein ML, Muzzin P et al (2005) Bone loss following ovariectomy is maintained in absence of adrenergic receptor ß1 and ß2 signaling. J Bone Miner Res 20(Suppl.1):S277Google Scholar
  81. 81.
    Dhillon H, Glatt V, Ferrari S, Bouxsein ML (2004) β-Adrenergic receptor KO mice have increased bone mass and strength but are not protected from ovariectomy-induced bone loss. J Bone Miner Res 19(Suppl.1):S32Google Scholar
  82. 82.
    Marenzana M, De Souza RL, Chenu C (2007) Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Bone 41:206–215PubMedCrossRefGoogle Scholar
  83. 83.
    Zeman RJ, Hirschman A, Hirschman ML et al (1991) Clenbuterol, a beta 2-receptor agonist, reduces net bone loss in denervated hindlimbs. Am J Physiol 261(2 Pt 1):E285–E289PubMedGoogle Scholar
  84. 84.
    Baker JG, Hall IP, Hill SJ (2003) Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64:1357–1369PubMedCrossRefGoogle Scholar
  85. 85.
    Pierroz D, Baldock PA, Bouxsein ML, Ferrari S (2006) Low cortical bone mass in mice lacking beta 1 and beta 2 adrenergic receptors is associated with low bone formation and circulating IGF-1. J Bone Min Res 21(Suppl. 1):S26Google Scholar
  86. 86.
    Levasseur R, Dargent-Molina P, Sabatier JP et al (2005) Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc 53:550–552PubMedCrossRefGoogle Scholar
  87. 87.
    Pasco JA, Henry MJ, Sanders KM et al (2004) Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong osteoporosis study. J Bone Miner Res 19:19–24PubMedCrossRefGoogle Scholar
  88. 88.
    Reid IR, Gamble GD, Grey AB, et al (2005) Beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 20:613–618PubMedCrossRefGoogle Scholar
  89. 89.
    Reid IR, Lucas J, Wattie D et al (2005) Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 90:5212–5216PubMedCrossRefGoogle Scholar
  90. 90.
    Rejnmark L, Vestergaard P, Kassem M et al (2004) Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 75:365–372PubMedCrossRefGoogle Scholar
  91. 91.
    Rejnmark L, Vestergaard P, Mosekilde L (2006) Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 24:581–589PubMedCrossRefGoogle Scholar
  92. 92.
    Schlienger RG, Kraenzlin ME, Jick SS et al (2004) Use of beta-blockers and risk fractures. JAMA 292:1326–1332PubMedCrossRefGoogle Scholar
  93. 93.
    Khosla S (2002) Leptin-central or peripheral to the regulation of bone metabolism? Endocrinology 143:4161–4164PubMedCrossRefGoogle Scholar
  94. 94.
    Hamrick MW (2004) Leptin, bone mass, & the thrifty phenotype. J Bone Miner Res 19:1607–1611PubMedCrossRefGoogle Scholar
  95. 95.
    Baldock P, Allison S, McDonald M et al (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21:1600–1607PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  1. 1.Department of Cellular Biology & Anatomy, Institute of Molecular Medicine & Genetics, Department of Orthopaedic SurgeryMedical College of GeorgiaAugustaUSA
  2. 2.Department of Medicine, Division of Bone DiseasesUniversity HospitalGenevaSwitzerland
  3. 3.Department of Cellular Biology & AnatomyMedical College of GeorgiaAugustaUSA

Personalised recommendations