Skip to main content
Log in

Increased augmentation index and central aortic blood pressure in osteoporotic postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis has been associated with cardiovascular disease. We found increased augmentation index, a measure of wave reflections and arterial stiffness, and central pressures in osteoporotic postmenopausal women. They also showed a higher estimated aortic pulse wave velocity, indicating a stiffer aorta. These changes may increase cardiovascular risk in postmenopausal osteoporosis.

Introduction

Evidence suggests a link between osteoporosis and cardiovascular disease. We investigated whether augmentation index (AIx), a measure of pulse wave reflections and arterial stiffness, is increased and related to the osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL) system in postmenopausal osteoporosis.

Methods

AIx and central aortic haemodynamics were assessed using pulse wave analysis in 182 cardiovascular disease-free osteoporotic postmenopausal women and in 160 controls. Statistical analysis was performed by unpaired t test, Mann-Whitney test, Spearman‘s correlation coefficient, and multivariate linear regression analysis.

Results

AIx (37.2 ± 7.0 vs. 29.6 ± 9.2 %, P < 0.0001) and central aortic systolic (117.5 ± 12.1 vs. 111.4 ± 12.2 mmHg, P < 0.0001) and pulse (40.5 ± 10.3 vs. 36.4 ± 8.1 mmHg, P = 0.0007) pressures were significantly higher in osteoporotic patients than in controls. The estimated aortic pulse wave velocity (PWV) was also significantly higher in the osteoporotic group. In multivariate analysis for osteoporotic patients, femoral neck and lumbar spine bone mineral density T scores were independent negative predictors of AIx (P < 0.0001). AIx was not correlated with serum levels of OPG and RANKL.

Conclusions

Osteoporotic postmenopausal women show increased AIx and central aortic pressures, and a higher estimated aortic PWV, indicating a stiffer aorta. Such alterations may increase cardiovascular risk in postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanko LB, Christiansen C, Cox DA et al (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  2. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality.Am J Med 106:273–278

    Article  PubMed  Google Scholar 

  3. Mangiafico RA, Russo E, Riccobene S et al (2006) Increased prevalence of peripheral arterial disease in osteoporotic postmenopausal women. J Bone Miner Metab 24:125–131

    Article  PubMed  Google Scholar 

  4. Pennisi P, Signorelli SS, Riccobene S et al (2004) Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 15:389–395

    Article  PubMed  CAS  Google Scholar 

  5. Farhat GN, Strotmeyer ES, Newman AB et al (2006) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 79:102–111

    Article  PubMed  CAS  Google Scholar 

  6. Sennerby U, Farahmand B, Ahlbom A et al (2007) Cardiovascular diseases and future risk of hip fracture in women. Osteoporos Int DOI 10.1007/s00198-007-0386-0

  7. Laurent S, Cockcroft J, Van Bortel L, European Network for Non-invasive Investigation of Large Arteries et al (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  8. Hirose K, Tomiyama H, Okazaki R et al (2003) Increased pulse wave velocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia. J Clin Endocrinol Metab 88:2573–2578

    Article  PubMed  CAS  Google Scholar 

  9. Sumino H, Ichikawa S, Kasama S et al (2006) Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 55:212–218

    Article  PubMed  CAS  Google Scholar 

  10. Yamada S, Inaba M, Goto H et al (2006) Associations between physical activity, peripheral atherosclerosis and bone status in healthy Japanese women. Atherosclerosis 188:196–202

    Article  PubMed  CAS  Google Scholar 

  11. Sabit R, Bolton CE, Edwards PH et al (2007) Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med DOI 10.1164/rccm.200701-067OC

  12. Nichols WW, O’Rourke MF (1998) McDonald’s blood flow in arteries: Theoretical, experimental and clinical principles. Arnold, London

    Google Scholar 

  13. Pauca AL, O’Rourke MF, Kon ND (2001) Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38:932–937

    Article  PubMed  CAS  Google Scholar 

  14. Nurnberger J, Keflioglu-Scheiber A, Opazo Saez AM et al (2002) Augmentation index is associated with cardiovascular risk.J Hypertens 20:2407–2414

    Article  PubMed  Google Scholar 

  15. Wilkinson IB, Prasad K, Hall IR et al (2002) Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 39:1005–1011

    Article  PubMed  Google Scholar 

  16. Wilkinson IB, MacCallum H, Rooijmans DF et al (2000) Increased augmentation index and systolic stress in type 1 diabetes mellitus. QJM 93:441–448

    Article  PubMed  CAS  Google Scholar 

  17. London GM, Blacher J, Pannier B et al (2001) Arterial wave reflections and survival in end-stage renal failure. Hypertension 38:434–438

    PubMed  CAS  Google Scholar 

  18. Weber T, Auer J, O’Rourke MF et al (2004) Arterial stiffness, wave reflections, and the risk of coronary artery disease.Circulation 109:184–189

    Article  PubMed  Google Scholar 

  19. Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    PubMed  CAS  Google Scholar 

  20. Min H, Morony S, Sarosi I et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474

    Article  PubMed  CAS  Google Scholar 

  21. Jono S, Ikari Y, Shioi A et al (2002) Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease.Circulation 106:1192–1194

    Article  PubMed  CAS  Google Scholar 

  22. Ueland T, Jemtland R, Godang K et al (2004) Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction.J Am Coll Cardiol 44:1970–1976

    Article  PubMed  CAS  Google Scholar 

  23. Kiechl S, Schett G, Wenning G et al (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180

    Article  PubMed  CAS  Google Scholar 

  24. Schoppet M, Schaefer JR, Hofbauer LC (2003) Low serum levels of soluble RANK ligand are associated with the presence of coronary artery disease in men. Circulation 107:e76

    Article  PubMed  CAS  Google Scholar 

  25. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (1994) World Health Organ Tech Rep Ser 843:1–129

  26. Paffenbarger RS Jr, Wing AL, Hyde RT (1978) Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 108:161–175

    PubMed  Google Scholar 

  27. Alagona C, Soro A, Westerbacka J et al (2003) Low HDL cholesterol concentration is associated with increased intima-media thickness independent of arterial stiffness in healthy subjects from families with low HDL cholesterol. Eur J Clin Invest 33:457–463

    Article  PubMed  CAS  Google Scholar 

  28. Kelly R, Hayward C, Avolio A et al (1989) Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80:1652–1659

    PubMed  CAS  Google Scholar 

  29. Cameron JD, McGrath BP, Dart AM (1998) Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J Am Coll Cardiol 32:1214–1220

    Article  PubMed  CAS  Google Scholar 

  30. Ravikumar R, Deepa R, Shanthirani C et al (2002) Comparison of carotid intima-media thickness, arterial stiffness, and brachial artery flow mediated dilatation in diabetic and nondiabetic subjects (The Chennai Urban Population Study [CUPS-9]). Am J Cardiol 90:702–707

    Article  PubMed  Google Scholar 

  31. Tanaka H, DeSouza CA, Seals DR (1998) Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol 18:127–132

    PubMed  CAS  Google Scholar 

  32. Lebrun CE,van der Schouw YT, Bak AA et al (2002) Arterial stiffness in postmenopausal women: determinants of pulse wave velocity. J Hypertens 20:2165–2172

    Article  PubMed  CAS  Google Scholar 

  33. Williams B, Lacy PS, Thom SM, CAFE Investigators, Anglo-Scandinavian Cardiac Outcomes Trial Investigators, CAFE Steering Committee, Writing Committee et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113:1213–1225

    Article  PubMed  CAS  Google Scholar 

  34. O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46:200–204

    Article  PubMed  CAS  Google Scholar 

  35. Danchin N, Benetos A, Lopez-Sublet M, ESCAPP Investigators et al (2004) Aortic pulse pressure is related to the presence and extent of coronary artery disease in men undergoing diagnostic coronary angiography: a multicentre study. Am J Hypertens 17:129–133

    Article  PubMed  Google Scholar 

  36. Hofbauer LC, Khosla S, Dunstan CR et al (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  PubMed  CAS  Google Scholar 

  37. Uemura H, Yasui T, Miyatani Y et al (2007) Circulating osteoprotegerin is associated with age and systolic blood pressure, but not with lipid profile or fasting glucose, in postmenopausal women. Menopause DOI 10.1097/gme.0b013e318046369b

  38. Wilkinson IB, MacCallum H, Cockcroft JR et al (2002) Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo.Br J Clin Pharmacol 53:189–192

    Article  PubMed  CAS  Google Scholar 

  39. McEniery CM, Wallace S, Mackenzie IS et al (2006) Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension 48:602–608

    Article  PubMed  CAS  Google Scholar 

  40. Sanada M,Taguchi A,Higashi Y et al (2004) Forearm endothelial function and bone mineral loss in postmenopausal women. Atherosclerosis 176:387–392

    Article  PubMed  CAS  Google Scholar 

  41. Zaydun G, Tomiyama H, Hashimoto H et al (2006) Menopause is an independent factor augmenting the age-related increase in arterial stiffness in the early postmenopausal phase. Atherosclerosis 184:137–142

    Article  PubMed  CAS  Google Scholar 

  42. Rajkumar C, Kingwell BA, Cameron JD et al (1997) Hormonal therapy increases arterial compliance in postmenopausal women. J Am Coll Cardiol 30:350–356

    Article  PubMed  CAS  Google Scholar 

  43. Grant SF, Reid DM, Blake G et al (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 14:203–205

    Article  PubMed  CAS  Google Scholar 

  44. Brull DJ, Murray LJ, Boreham CA et al (2001) Effect of a COL1A1 Sp1 binding site polymorphism on arterial pulse wave velocity: an index of compliance. Hypertension 38:444–448

    PubMed  CAS  Google Scholar 

  45. Levy D, Garrison R, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 332:1561–1566

    Article  Google Scholar 

  46. Saba PS, Roman MJ, Pinni R et al (1993) Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects. J Am Coll Cardiol 22:1873–1880

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Mangiafico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangiafico, R.A., Alagona, C., Pennisi, P. et al. Increased augmentation index and central aortic blood pressure in osteoporotic postmenopausal women. Osteoporos Int 19, 49–56 (2008). https://doi.org/10.1007/s00198-007-0438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0438-5

Keywords

Navigation