Osteoporosis International

, Volume 19, Issue 3, pp 257–268 | Cite as

Effects of treatment with fluoride on bone mineral density and fracture risk - a meta-analysis

  • P. VestergaardEmail author
  • N. R. Jorgensen
  • P. Schwarz
  • L. Mosekilde



Fluoride has fallen into discredit due to the absence of an anti-fracture effect. However, in this meta-analysis, a fracture reducing potential was seen at low fluoride doses [≤20 mg fluoride equivalents (152 mg monofluorophosphate/44 mg sodium fluoride)]: OR = 0.3, 95% CI: 0.1–0.9 for vertebral and OR = 0.5, 95% CI: 0.3–0.8 for non-vertebral fractures.


Fluoride is incorporated into bone mineral and has an anabolic effect. However, the biomechanical competence of the newly formed bone may be reduced.


A systematic search of PubMed, Embase, and ISI web of science yielded 2,028 references.


Twenty-five eligible studies were identified. Spine BMD increased 7.9%, 95% CI: 5.4–10.5%, and hip BMD 2.1%, 95% CI: 0.9–3.4%. A meta-regression showed increasing spine BMD with increasing treatment duration (5.04 ± 2.16%/year of treatment). Overall there was no significant effect on the risk of vertebral (OR = 0.8, 95% CI: 0.5–1.5) or non-vertebral fracture (OR = 0.8, 95% CI: 0.5–1.4). With a daily dose of ≤20 mg fluoride equivalents (152 mg monofluorophosphate/44 mg sodium fluoride), there was a statistically significant reduction in vertebral (OR = 0.3, 95% CI: 0.1–0.9) and non-vertebral (OR = 0.5, 95% CI: 0.3–0.8) fracture risk. With a daily dose >20 mg fluoride equivalents, there was no significant reduction in vertebral (OR = 1.3, 95% CI: 0.8–2.0) and non-vertebral (OR = 1.5, 95% CI: 0.8–2.8) fracture risk.


Fluoride treatment increases spine and hip BMD, depending on treatment duration. Overall there was no effect on hip or spine fracture risk. However, in subgroup analyses a low fluoride dose (≤20 mg/day of fluoride equivalents) was associated with a significant reduction in fracture risk.


Fluoride Fracture Meta-analysis Meta-regression Monofluorophosphate Sodium fluoride 



Research librarian Ms. Edith Clausen is acknowledged for skilful help with the references.

Financial support

Laura og Jens Veng Christensens Foundation, and Bagermester August H. Jensen og Hustrus Legat provided financial support.


  1. 1.
    Haguenauer D, Welch V, Shea B et al (2000) Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos Int 11:727–738PubMedCrossRefGoogle Scholar
  2. 2.
    Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468PubMedCrossRefGoogle Scholar
  3. 3.
    Posner AS (1996) The effect of fluoride on bone mineralisation. In: Fejerskov O, Ekstrand J, Burt BA (eds) Fluoride in dentistry, 1st edn. Munksgaard, Copenhagen, pp 88–96Google Scholar
  4. 4.
    Qu H, Wie M (2006) The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater 2:113–119PubMedCrossRefGoogle Scholar
  5. 5.
    Kassem M, Mosekilde L, Eriksen EF (1994) Effects of fluoride on human bone cells in vitro: differences in responsiveness between stromal osteoblast precursors and mature osteoblasts. Eur J Endocrinol 130:381–386PubMedGoogle Scholar
  6. 6.
    Khokher MA, Dandona P (1990) Fluoride stimulates 2H-thymidine incorporation and alkaline phosphatase production by human osteoblasts. Metabolism 39:1118–1121PubMedCrossRefGoogle Scholar
  7. 7.
    Eriksen EF, Mosekilde L, Melsen F (1985) Effect of sodium fluoride, calcium, phosphate and vitamin D2 on trabecular bone balance and remodeling in osteoporotics. Bone 6:381–389PubMedCrossRefGoogle Scholar
  8. 8.
    Charles P, Mosekilde L, Jensen FT (1985) The effects of sodium fluoride, calcium phosphate, and vitamin D2 for one to two years on calcium and phosphorus metabolism in postmenopausal women with spinal crush fracture osteoporosis. Bone 6:201–206PubMedCrossRefGoogle Scholar
  9. 9.
    Briancon D, Meunier PJ (1981) Treatment of osteoporosis with fluoride, calcium, and vitamin D. Orthop Clin North Am 12:629–648PubMedGoogle Scholar
  10. 10.
    Vesterby A, Gundersen HJG, Melsen F, Mosekilde L (1991) Marrow space star volume in iliac crest decreases in osteoporotic patients after continuous treatment with fluoride, calcium and vitamin. Bone 12:33–37PubMedCrossRefGoogle Scholar
  11. 11.
    Melsen F, Eriksen EF, Mosekilde L (1996) Clinical aspects of fluoride in bone. In: Fejerskov O, Ekstrand J, Burt BA (eds) Fluoride in dentristy, 1st edn. Munksgaard,Copenhagen, pp 96–111Google Scholar
  12. 12.
    Sogaard CH, Mosekilde L, Richards A, Mosekilde L (1994) Marked decrease in trabecular bone quality after five years of sodium fluoride therapy - assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients. Bone 15:393–399PubMedCrossRefGoogle Scholar
  13. 13.
    Schnitzler CM, Solomon L (1985) Trabecular stress fractures during fluoride therapy for osteoporosis. Skeletal Radiol 14:276–279PubMedCrossRefGoogle Scholar
  14. 14.
    Haguenauer D, Welch V, Shea B, Tugwell P, Wells G (2000) Fluoride for treating postmenopausal osteoporosis. Cochrane Database Syst Rev CD002825Google Scholar
  15. 15.
    Riggs BL, Seeman E, Hodgson SF, Taves DR, O’Fallon WM (1982) Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. Comparison with conventional therapy. N Engl J Med 306:446–450PubMedCrossRefGoogle Scholar
  16. 16.
    Grove O, Halver B (1981) Relief of osteoporotic backache with fluoride, calcium, and calciferol. Acta Med Scand 209:469–471PubMedCrossRefGoogle Scholar
  17. 17.
    Christiansen C, Christensen MS, McNair P et al (1980) Prevention of early bone postmenopausal loss: controlled 2-year study in 315 normal females. European J Clin Invest 10:273–279CrossRefGoogle Scholar
  18. 18.
    Böhning D (2000) Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and others, 1st edn. Chapman&Hall/CRC, Boca RatonGoogle Scholar
  19. 19.
    Griffith LE, Walter SD (1997) The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50:683–691PubMedCrossRefGoogle Scholar
  20. 20.
    Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22:2693–2710PubMedCrossRefGoogle Scholar
  21. 21.
    Siddiqi A, Burrin JM, Noonan K et al (1997) A longitudinal study of markers of bone turnover in Graves’ disease and their value in predicting bone mineral density. J Clin Endocrinol Metab 82:753–759PubMedCrossRefGoogle Scholar
  22. 22.
    Jowsey J, Riggs BL, Kelly PJ, Hoffman DL (1972) Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis. Am J Med 53:43–49PubMedCrossRefGoogle Scholar
  23. 23.
    Riggs BL, Hodgson SF, O’Fallon WM et al (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802–809PubMedCrossRefGoogle Scholar
  24. 24.
    Orcel P, De Vernejoul MC, Prier A et al (1990) Stress fractures of lower limbs in osteoporotic patients treated with fluoride. J Bone Miner Res 5:S91–S94CrossRefGoogle Scholar
  25. 25.
    Vestergaard P, Jorgensen NR, Mosekilde L, Schwarz P (2007) Effects of parathyroid hormone alone or in combination with antiresorptive therapy on bone mineral density and fracture risk - a meta-analysis. Osteoporos Int 18:45—57PubMedCrossRefGoogle Scholar
  26. 26.
    O’Donnell S, Cranney A, Wells GA, Adachi JD, Reginster JY (2006) Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev CD005326Google Scholar
  27. 27.
    Abitbol V, Mary JY, Roux C et al (2002) Osteoporosis in inflammatory bowel disease: effect of calcium and vitamin D with or without fluoride. Aliment Pharmacol Ther 16:919—927PubMedCrossRefGoogle Scholar
  28. 28.
    Adachi JD, Bell MJ, Bensen WG et al (1997) Fluoride therapy in prevention of rheumatoid arthritis induced bone loss. J Rheumatol 24:2308—2313PubMedGoogle Scholar
  29. 29.
    Adachi JD, Bell MJ, Bensen WG, et al (1996) A randomized, double-blind, placebo-controlled trial of the effects of fluoride on lumbar spine bone mineral density in patients with rheumatoid arthritis. Arthritis Rheum 39:661Google Scholar
  30. 30.
    Alexandersen P, Riis BJ, Christiansen C (1999) Monofluorophosphate combined with hormone replacement therapy induces a synergistic effect on bone mass by dissociating bone formation and resorption in postmenopausal women: a randomized study. J Clin Endocrinol Metab 84:3013–3020PubMedCrossRefGoogle Scholar
  31. 31.
    Gambacciani M, Spinetti A, Taponeco F et al (1995) Treatment of postmenopausal vertebral osteopenia with monofluorophospate: a long-term calcium-controlled study. Osteoporos Int 5:467–471PubMedCrossRefGoogle Scholar
  32. 32.
    Guanabens N, Pares A, Monegal A et al (1997) Etidronate versus fluoride for treatment of osteopenia in primary biliary cirrhosis: preliminary results after 2 years. Gastroenterology 113:219–224PubMedCrossRefGoogle Scholar
  33. 33.
    Guanabens N, Farrerons J, Perez-Edo L et al (2000) Cyclical etidronate versus sodium fluoride in established postmenopausal osteoporosis: a randomized 3 year trial. Bone 27:123–128PubMedCrossRefGoogle Scholar
  34. 34.
    Guaydier-Souquieres G, Kotzki PO, Sabatier JP, Basse-Cathalinat B, Loeb G (1996) In corticosteroid-treated respiratory diseases, monofluorophosphate increases lumbar bone density: a double-masked randomized study. Osteoporos Int 6:171–177PubMedCrossRefGoogle Scholar
  35. 35.
    Gutteridge DH, Stewart GO, Prince RL et al (2002) A randomized trial of sodium fluoride (60 mg) +/- estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral bone loss with sodium fluoride; concurrent estrogen prevents peripheral loss, but not vertebral fractures. Osteoporos Int 13:158–170PubMedCrossRefGoogle Scholar
  36. 36.
    Hansson T, Roos B (1987) The effect of fluoride and calcium on spinal bone mineral content: a controlled, prospective (3 years) study. Calcif Tissue Int 40:315–317PubMedCrossRefGoogle Scholar
  37. 37.
    Kleerekoper M, Peterson EL, Nelson DA et al (1991) A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteoporos Int 1:155–161PubMedCrossRefGoogle Scholar
  38. 38.
    Lems WF, Jacobs JW, Bijlsma JW et al (1997) Is addition of sodium fluoride to cyclical etidronate beneficial in the treatment of corticosteroid induced osteoporosis? Ann Rheum Dis 56:357–363PubMedGoogle Scholar
  39. 39.
    Lems WF, Jacobs WG, Bijlsma JW et al (1997) Effect of sodium fluoride on the prevention of corticosteroid-induced osteoporosis. Osteoporos Int 7:575–582PubMedCrossRefGoogle Scholar
  40. 40.
    Lippuner K, Haller B, Casez JP, Montandon A, Jaeger P (1996) Effect of disodium monofluorophosphate, calcium and vitamin D supplementation on bone mineral density in patients chronically treated with glucocorticosteroids: a prospective, randomized, double-blind study. Miner Electrolyte Metab 22:207–213PubMedGoogle Scholar
  41. 41.
    Mamelle N, Dusan R, Martin JL et al (1988) Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet 2:361–365PubMedCrossRefGoogle Scholar
  42. 42.
    Meunier PJ, Sebert JL, Reginster JY et al (1998) Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteoporos Int 8:4–12PubMedCrossRefGoogle Scholar
  43. 43.
    Pak CY, Sakhaee K, Adams-Huet B et al (1995) Treatment of postmenopausal osteoporosis with slow-release sodium fluoride. Final report of a randomized controlled trial. Ann Intern Med 123:401–408PubMedGoogle Scholar
  44. 44.
    Reginster JY, Meurmans L, Zegels B et al (1998) The effect of sodium monofluorophosphate plus calcium on vertebral fracture rate in postmenopausal women with moderate osteoporosis. A randomized, controlled trial. Ann Intern Med 129:1–8PubMedGoogle Scholar
  45. 45.
    Ringe JD, Dorst A, Kipshoven C, Rovati LC, Setnikar I (1998) Avoidance of vertebral fractures in men with idiopathic osteoporosis by a three year therapy with calcium and low-dose intermittent monofluorophosphate. Osteoporos Int 8:47–52PubMedCrossRefGoogle Scholar
  46. 46.
    Ringe JD, Kipshoven C, Coster A, Umbach R (1999) Therapy of established postmenopausal osteoporosis with monofluorophosphate plus calcium: dose-related effects on bone density and fracture rate. Osteoporos Int 9:171–178PubMedCrossRefGoogle Scholar
  47. 47.
    Ringe JD, Dorst A, Faber H et al (2005) Efficacy of etidronate and sequential monofluorophosphate in severe postmenopausal osteoporosis: a pilot study. Rheumatol Int 25:296–300PubMedCrossRefGoogle Scholar
  48. 48.
    Sebert JL, Richard P, Mennecier I, Bisset JP, Loeb G (1995) Monofluorophosphate increases lumbar bone density in osteopenic patients: a double-masked randomized study. Osteoporos Int 5:108–114PubMedCrossRefGoogle Scholar
  49. 49.
    Von Tirpitz C, Klaus J, Bruckel J et al (2000) Increase of bone mineral density with sodium fluoride in patients with Crohn’s disease. Eur J Gastroenterol Hepatol 12:19–24CrossRefGoogle Scholar
  50. 50.
    Von Tirpitz C, Klaus J, Steinkamp M et al (2003) Therapy of osteoporosis in patients with Crohn’s disease: a randomized study comparing sodium fluoride and ibandronate. Aliment Pharmacol Ther 17:807–816CrossRefGoogle Scholar
  51. 51.
    Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • P. Vestergaard
    • 1
    Email author
  • N. R. Jorgensen
    • 2
    • 3
  • P. Schwarz
    • 3
  • L. Mosekilde
    • 1
  1. 1.The Osteoporosis Clinic, Department of Endocrinology and Metabolism CAarhus University Hospital Aarhus AmtssygehusAarhus CDenmark
  2. 2.Department of Clinical BiochemistryHvidovre HospitalHvidovreDenmark
  3. 3.Research Center of Aging and Osteoporosis, Department of GeriatricsGlostrup University HospitalGlostrupDenmark

Personalised recommendations