Osteoporosis International

, Volume 18, Issue 11, pp 1507–1514

Population-based reference values for bone mineral density in young men

  • M. Høiberg
  • T. L. Nielsen
  • K. Wraae
  • B. Abrahamsen
  • C. Hagen
  • M. Andersen
  • K. Brixen
Original Article

Abstract

Summary

Population-based reference values for peak bone mass density in Danish men. BMD of total hip (1.078 ± 0,14 g/cm2) differed significantly from values from National Health and Nutrition Examination Survey III and of total lumbar spine ((1.073 ± 0.125 g/cm2) differed significantly from Hologic values.

Introduction

Geographic, ethnic, and socio-economic factors are known to affect bone mineral density (BMD) and peak bone mass significantly. Reference values for male peak bone mass are scarce, and the diagnosis of male osteoporosis often relies on values provided by producers of dual-energy X-ray absorptiometry (DXA) equipment.

Methods

The aim of the present study was 1) to establish population-based reference values for BMD in young men and 2) to study subgroups based on variables with suspected impact on bone metabolism. We included 783 young Caucasian men aged 20 to 30 years in the Odense Androgen Study (OAS).

Results

Peak BMD was attained within the third decade. Obesity (BMI > 30 kg/m2) was associated with higher BMD. Abuse of anabolic steroids as well as chronic illness was associated with lower BMD. Our population-based reference values for BMD of the total hip (1.078 ± 0.14 g/cm2) differed significantly from published values from National Health and Nutrition Examination Survey III for non-Hispanic white men, while BMD of total lumbar spine (1.073 ± 0.125 g/cm2) differed significantly from Hologic reference values.

Conclusions

Locally derived reference values are important to avoid false positive or false negative findings during work-up in patients evaluated for osteoporosis.

Keywords

Bone mineral density Male reference values 

References

  1. 1.
    (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: programs and collection procedures. Vital Health Stat 11–407Google Scholar
  2. 2.
    Abrahamsen B, Tofteng CL, Barenholdt O, Vestergaard P, Stilgren LS, Beck-Nielsen H, Nielsen SP, Sorensen OH, Mosekilde L (2003) Standardization of BMD T-Scores in the first five years after the menopause: do femoral neck-equivalent and older normative range T-Scores improve diagnostic agreement? J Clin Densitom 6:87–95PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmed AIH, Blake GM, Rymer JM, Fogelman I (1997) Screening for osteopenia and osteoporosis: Do accepted normal ranges lead to overdiagnosis? Osteoporosis Int 7:432–438CrossRefGoogle Scholar
  4. 4.
    Armstrong DW III, Shakir KM, Drake AJ III (2000) Dual X-ray absorptiometry total body bone mineral content and bone mineral density in 18- to 22-year-old caucasian men. Bone 27:835–839PubMedCrossRefGoogle Scholar
  5. 5.
    Bacon WE, Maggi S, Looker A, Harris T, Nair CR, Giaconi J, Honkanen R, Ho SC, Peffers KA, Torring O, Gass R, Gonzalez N (1996) International comparison of hip fracture rates in 1988–89. Osteoporos Int 6:69–75PubMedCrossRefGoogle Scholar
  6. 6.
    Bhudhikanok GS, Wang MC, Eckert K, Matkin C, Marcus R, Bachrach LK (1996) Differences in bone mineral in young Asian and Caucasian Americans may reflect differences in bone size. J Bone Miner Res 11:1545–1556PubMedGoogle Scholar
  7. 7.
    Bolotin HH (1998) Analytic and quantitative exposition of patient-specific systematic inaccuracies inherent in planar DXA-derived in vivo BMD measurements. Med Phys 25:139–151PubMedCrossRefGoogle Scholar
  8. 8.
    Braithwaite RS, Col NF, Wong JB (2003) Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc 51:364–370PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17SPubMedCrossRefGoogle Scholar
  10. 10.
    Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMedGoogle Scholar
  11. 11.
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75PubMedCrossRefGoogle Scholar
  12. 12.
    Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208PubMedGoogle Scholar
  13. 13.
    del Rio BL, Romera BM, Pavia SJ, Setoain QJ, Serra ML, Garces RP, Lafuente NC, Domenech Torne FM (1992) Bone mineral density in two different socio-economic population groups. Bone Miner 18:159–168CrossRefGoogle Scholar
  14. 14.
    Diaz CM, Carrasco de la Pena JL, Honorato PJ, Perez CR, Rapado A, Ruiz MI (1997) Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos Int 7:59–64CrossRefGoogle Scholar
  15. 15.
    Elffors I, Allander E, Kanis JA, Gullberg B, Johnell O, Dequeker J, Dilsen G, Gennari C, Lopes Vaz AA, Lyritis G (1994) The variable incidence of hip fracture in southern Europe: the MEDOS Study. Osteoporos Int 4:253–263PubMedCrossRefGoogle Scholar
  16. 16.
    Elliott JR, Gilchrist NL, Wells JE, Turner JG, Ayling E, Gillespie WJ, Sainsbury R, Hornblow A, Donald RA (1990) Effects of age and sex on bone density at the hip and spine in a normal Caucasian New Zealand population. N Z Med J 103:33–36PubMedGoogle Scholar
  17. 17.
    Fatayerji D, Cooper AM, Eastell R (1999) Total body and regional bone mineral density in men: effect of age. Osteoporos Int 10:59–65PubMedCrossRefGoogle Scholar
  18. 18.
    Faulkner KG, Orwoll E (2002) Implications in the use of T-scores for the diagnosis of osteoporosis in men. J Clin Densitom 5:87–93PubMedCrossRefGoogle Scholar
  19. 19.
    Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350PubMedCrossRefGoogle Scholar
  20. 20.
    Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 6:432–436PubMedCrossRefGoogle Scholar
  21. 21.
    Frank L (2003) Epidemiology. The epidemiologist’s dream: Denmark. Science 301:163PubMedCrossRefGoogle Scholar
  22. 22.
    Gallagher JC, Melton LJ, Riggs BL, Bergstrath E (1980) Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin Orthop 163–171Google Scholar
  23. 23.
    Goucke CR (1985) Mortality following surgery for fractures of the neck of femur. Anaesthesia 40:578–583PubMedCrossRefGoogle Scholar
  24. 24.
    Gurlek A, Bayraktar M, Ariyurek M (2000) Inappropriate reference range for peak bone mineral density in dual-energy X-ray absorptiometry: implications for the interpretation of T-scores. Osteoporos Int 11:809–813PubMedCrossRefGoogle Scholar
  25. 25.
    Harma M, Heliovaara M, Aromaa A, Knekt P (1986) Thoracic spine compression fractures in Finland. Clin Orthop 188–194Google Scholar
  26. 26.
    Hui SL, Johnston CC Jr, Mazess RB (1985) Bone mass in normal children and young adults. Growth 49:34–43PubMedGoogle Scholar
  27. 27.
    Kanis JA, Gluer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202PubMedCrossRefGoogle Scholar
  28. 28.
    Kin K, Lee JH, Kushida K, Sartoris DJ, Ohmura A, Clopton PL, Inoue T (1993) Bone density and body composition on the Pacific rim: a comparison between Japan-born and U.S.-born Japanese-American women. J Bone Miner Res 8:861–869PubMedGoogle Scholar
  29. 29.
    Kroger H, Laitinen K (1992) Bone mineral density measured by dual-energy X-ray absorptiometry in normal men. Eur J Clin Invest 22:454–460PubMedCrossRefGoogle Scholar
  30. 30.
    Kudlacek S, Schneider B, Peterlik M, Leb G, Klaushofer K, Weber K, Woloszczuk W, Willvonseder R (2003) Normative data of bone mineral density in an unselected adult Austrian population. Eur J Clin Invest 33:332–339PubMedCrossRefGoogle Scholar
  31. 31.
    Lahti A, Hyltoft PP, Boyd JC (2002) Impact of subgroup prevalences on partitioning of Gaussian-distributed reference values. Clin Chem 48:1987–1999PubMedGoogle Scholar
  32. 32.
    Leslie WD, Adler RA, Fuleihan GE-H, Hodsman AB, Kendler DL, McClung M et al (2006) Application of the 1994 WHO classification to populations other than postmenopausal caucasian women: the 2005 ISCD official position. J Clin Densitom 9:22–30PubMedCrossRefGoogle Scholar
  33. 33.
    Lofman O, Larsson L, Ross I, Toss G, Berglund K (1997) Bone mineral density in normal Swedish women. Bone 20:167–174PubMedCrossRefGoogle Scholar
  34. 34.
    Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12:1761–1768PubMedCrossRefGoogle Scholar
  35. 35.
    Lorentzon M, Swanson C, Eriksson A-L, Mellström D, Ohlsson C (2006) Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res 21:332–339PubMedCrossRefGoogle Scholar
  36. 36.
    Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, Howman-Giles R, Sillence D, Cowell CT (1994) Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 9:1451–1458PubMedCrossRefGoogle Scholar
  37. 37.
    Lu PW, Cowell CT, LLoyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590PubMedCrossRefGoogle Scholar
  38. 38.
    Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Johnell O, Khaw KT, Masaryk P, Pols H, Poor G, Reid D, Scheidt-Nave C, Weber K, Silman AJ, Reeve J (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int 7:175–189PubMedCrossRefGoogle Scholar
  39. 39.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259PubMedGoogle Scholar
  40. 40.
    Mazess RB, Barden H (1999) Bone density of the spine and femur in adult white females. Calcif Tissue Int 65:91–99PubMedCrossRefGoogle Scholar
  41. 41.
    Nielsen TL, Wraae K, Brixen KT, Hermann AP, Andersen M, Hagen C (2006) Prevalence of overweight, obesity and physical inactivity in 20- to 29-year-old, Danish men. Relation to sociodemgraphy physical dysfunction and low socioeconomic status: the Odense Androgen Study. Int J Obes (Lond). 2006 jan 17Google Scholar
  42. 42.
    Pacini S, Aterini S, Ruggiero M, Gulisano M (1999) Bone mineral density and anthropometric measures in normal and osteoporotic men. Ital J Anat Embryol 104:195–200PubMedGoogle Scholar
  43. 43.
    Pearson J, Dequeker J, Reeve J, Felsenberg D, Henley M, Bright J, Lunt M, Adams J, Diaz CM, Galan F (1995) Dual X-ray absorptiometry of the proximal femur: normal European values standardized with the European Spine Phantom. J Bone Miner Res 10:315–324PubMedGoogle Scholar
  44. 44.
    Petley GW, Cotton AM, Murrills AJ, Taylor PA, Cooper C, Cawley MI, Wilkin TJ (1996) Reference ranges of bone mineral density for women in southern England: the impact of local data on the diagnosis of osteoporosis. Br J Radiol 69:655–660PubMedCrossRefGoogle Scholar
  45. 45.
    Richmond J, Aharonoff GB, Zuckerman JD, Koval KJ (2003) Mortality risk after hip fracture. J Orthop Trauma 17:53–56PubMedCrossRefGoogle Scholar
  46. 46.
    Rico H, Revilla M, Hernandez ER, Villa LF, Alvarez dB (1992) Sex differences in the acquisition of total bone mineral mass peak assessed through dual-energy X-ray absorptiometry. Calcif Tissue Int 51:251–254PubMedCrossRefGoogle Scholar
  47. 47.
    Selby PL, Davies M, Adams JE (2000) Do men and women fracture bones at similar bone densities? Osteoporos Int 11:153–157PubMedCrossRefGoogle Scholar
  48. 48.
    Simmons A, Barrington S, O’Doherty MJ, Coakley AJ (1995) Dual energy X-ray absorptiometry normal reference range use within the UK and the effect of different normal ranges on the assessment of bone density. Br J Radiol 68:903–909PubMedGoogle Scholar
  49. 49.
    Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A, Zipf WB (1991) Bone mass in healthy children: measurement with quantitative DXA. Radiology 179:735–738PubMedGoogle Scholar
  50. 50.
    Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, Berger C, Hanley DA, Prior JC (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904PubMedCrossRefGoogle Scholar
  51. 51.
    Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: normative values for the 2-20-year-old population. Bone 16:393S–399SPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • M. Høiberg
    • 1
  • T. L. Nielsen
    • 1
  • K. Wraae
    • 1
  • B. Abrahamsen
    • 1
  • C. Hagen
    • 1
  • M. Andersen
    • 1
  • K. Brixen
    • 1
  1. 1.Department of EndocrinologyOdense University HospitalOdense CDenmark

Personalised recommendations