Advertisement

Osteoporosis International

, Volume 18, Issue 9, pp 1235–1242 | Cite as

Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women

  • A. Windelinckx
  • G. De Mars
  • G. Beunen
  • J. Aerssens
  • C. Delecluse
  • J. Lefevre
  • M. A. I. Thomis
Original Article

Abstract

Introduction

Vitamin D receptor (VDR) polymorphisms have been associated with fracture risk and muscle strength, although evidence for the latter is limited and conflicting.

Methods

BsmI, TaqI and FokI VDR polymorphisms were genotyped in 253 men (54.9 ± 10.2 yr) and 240 women (41.5 ± 13.2 yr). Haplotypes were constructed for BsmI and TaqI. Handgrip, isometric (at 60°, 120° and 180° joint angle) and eccentric torques (60°/s) of knee extension and flexion were analysed using AN(C)OVA. Torque-velocity curves were constructed for concentric torques at 60°/s, 180°/s and 240°/s and analysed using multivariate AN(C)OVA. Age, height and fat-free mass were included as covariates.

Results

Quadriceps isometric and concentric strength were higher in female f/f homozygotes compared to F allele carriers. Adjustment for confounding factors rendered results for quadriceps isometric strength at 120° non-significant. No significant association was found with BsmI-TaqI haplotype in women. In contrast, male Bt/Bt homozygotes had higher isometric quadriceps strength at 150° and higher concentric quadriceps strength than bT allele carriers without and with adjustment for confounding factors. No association was observed with FokI in men. In both genders, no interaction effect was present between BsmI-TaqI haplotype and FokI.

Conclusions

Different VDR gene polymorphisms are associated with quadriceps strength in men and women.

Keywords

Ageing Association analysis Gender specific effects Muscle strength VDR 

Notes

Acknowledgements

Strength phenotyping of both middle-aged and senior groups was supported by the Flemish Government in the Policy Research Centre Sport, Physical Activity and Health. Genotyping was supported by a Research grant to Martine Thomis of the Fund for Scientific Research Flanders (FWO). Gunther De Mars is funded by grant G.0496.05 of the FWO. An Windelinckx is funded by the Research Fund of the K.U.Leuven (OT/04/44).

References

  1. 1.
    Kannus P, Uusi-Rasi K, Palvanen M et al (2005) Non-pharmacological means to prevent fractures among older adults. Ann Med 37(4):303–310PubMedCrossRefGoogle Scholar
  2. 2.
    Morrison NA, Yeoman R, Kelly PJ et al (1992) Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphisms and circulating osteocalcin. Proc Natl Acad Sci USA 89(15):6665–6669PubMedCrossRefGoogle Scholar
  3. 3.
    Morrison NA, Qi JC, Tokita A et al (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367(6460):284–287PubMedCrossRefGoogle Scholar
  4. 4.
    Kikuchi R, Uemura T, Gorai I et al (1999) Early and late postmenopausal bone loss is associated with BsmI vitamin D receptor gene polymorphism in Japanese women. Calcif Tissue Int 64(2):102–106PubMedCrossRefGoogle Scholar
  5. 5.
    Van Pottelbergh I, Goemaere S, De Bacquer D et al (2002) Vitamin D receptor gene allelic variants, bone density, and bone turnover in community-dwelling men. Bone 31(5):631–637PubMedCrossRefGoogle Scholar
  6. 6.
    Duman BS, Tanakol R, Erensoy N et al (2004) Vitamin D receptor alleles, bone mineral density and turnover in postmenopausal osteoporotic and healthy women. Med Princ Pract 13(5):260–266PubMedCrossRefGoogle Scholar
  7. 7.
    Remes T, Vaisanen SB, Mahonen A et al (2005) Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men. Ann Med 37(5):383–392PubMedCrossRefGoogle Scholar
  8. 8.
    Uitterlinden AG, Pols HA, Burger H et al (1996) A large-scale population-based study of the association of vitamin D receptor gene polymorphisms with bone mineral density. J Bone Miner Res 11(9):1241–1248PubMedCrossRefGoogle Scholar
  9. 9.
    Aerssens J, Dequeker J, Peeters J et al (2000) Polymorphisms of the VDR, ER and COLIA1 genes and osteoporotic hip fracture in elderly postmenopausal women. Osteoporos Int 11(7):583–591PubMedCrossRefGoogle Scholar
  10. 10.
    van der Sluis I, de Muinck Keizer-Schrama SM, Krenning EP et al (2003) Vitamin D receptor gene polymorphism predicts height and bone size, rather than bone density in children and young adults. Calcif Tissue Int 73(4):332–338PubMedCrossRefGoogle Scholar
  11. 11.
    Dvornyk V, Liu PY, Long JR et al (2005) Contribution of genotype and ethnicity to bone mineral density variation in Caucasians and Chinese: a test for five candidate genes for bone mass. Chin Med J (Engl ) 118(15):1235–1244Google Scholar
  12. 12.
    Macdonald HM, McGuigan FE, Stewart A et al (2006) Large-scale population-^based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res 21(1):151–162PubMedCrossRefGoogle Scholar
  13. 13.
    Fang Y, van Meurs JB, d’Alesio A et al (2005) Promoter and 3′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet 77(5):807–823PubMedCrossRefGoogle Scholar
  14. 14.
    Garnero P, Munoz F, Borel O et al (2005) Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J Clin Endocrinol Metab 90(8):4829–4835PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen TV, Esteban LM, White CP et al (2005) Contribution of the collagen I alpha1 and vitamin D receptor genes to the risk of hip fracture in elderly women. J Clin Endocrinol Metab 90(12):6575–6579PubMedCrossRefGoogle Scholar
  16. 16.
    Sipila S, Heikkinen E, Cheng S et al (2006) Endogenous hormones, muscle strength, and risk of fall-related fractures in older women. J Gerontol A Biol Sci Med Sci 61(1):92–96PubMedGoogle Scholar
  17. 17.
    Lord SR, Ward JA, Williams P et al (1994) Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc 42(10):1110–1117PubMedGoogle Scholar
  18. 18.
    Stel VS, Smit JH, Pluijm SM et al (2003) Balance and mobility performance as treatable risk factors for recurrent falling in older persons. J Clin Epidemiol 56(7):659–668PubMedCrossRefGoogle Scholar
  19. 19.
    Luukinen H, Koski K, Laippala P et al (1997) Factors predicting fractures during falling impacts among home-dwelling older adults. J Am Geriatr Soc 45(11):1302–1309PubMedGoogle Scholar
  20. 20.
    Nguyen ND, Pongchaiyakul C, Center JR et al (2005) Identification of high-risk individuals for hip fracture: a 14-year prospective study. J Bone Miner Res 20(11):1921–1928PubMedCrossRefGoogle Scholar
  21. 21.
    Robbins JA, Schott AM, Garnero P et al (2005) Risk factors for hip fracture in women with high BMD: EPIDOS study. Osteoporos Int 16(2):149–154PubMedCrossRefGoogle Scholar
  22. 22.
    Bischoff HA, Borchers M, Gudat F et al (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33(1):19–24PubMedCrossRefGoogle Scholar
  23. 23.
    Geusens P, Vandevyver C, Vanhoof J et al (1997) Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res 12(12):2082–2088PubMedCrossRefGoogle Scholar
  24. 24.
    Vandevyver C, Vanhoof J, Declerck K et al (1999) Lack of association between estrogen receptor genotypes and bone mineral density, fracture history, or muscle strength in elderly women. J Bone Miner Res 14(9):1576–1582PubMedCrossRefGoogle Scholar
  25. 25.
    Dukas L, Bischoff H, Michiels L et al (2001) Vitamin D receptor genotype in community-dwelling elderly men and women: its relation to muscle strength results from the cross-sectional analyses of the baseline measurements of the AIMS-study. Abstract book of the 23rd annual meeting of the American Society of Bone and Mineral Research, S353Google Scholar
  26. 26.
    Grundberg E, Brandstrom H, Ribom EL et al (2004) Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol 150(3):323–328PubMedCrossRefGoogle Scholar
  27. 27.
    Wang P, Ma LH, Wang HY et al (2006) Association between polymorphisms of vitamin D receptor gene ApaI, BsmI and TaqI and muscular strength in young Chinese women. Int J Sports Med 27(3):182–186PubMedCrossRefGoogle Scholar
  28. 28.
    Roth SM, Zmuda JM, Cauley JA et al (2004) Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J Gerontol A Biol Sci Med Sci 59(1):B10–B15Google Scholar
  29. 29.
    Claessens AL, Beunen G, Malina RM (2000) Anthropometry, physique, body composition and maturity. In: Armstrong N, van Mechelen W (eds) Paediatric exercise science and medicine. Oxford University Press, Oxford, pp 11–22Google Scholar
  30. 30.
    Durnin JVGA, Womersley J (1974) Body fat assessment from total body density and its estimations from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–87PubMedCrossRefGoogle Scholar
  31. 31.
    Uitterlinden AG, Fang Y, van Meurs JBJ et al (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338(2):143–156PubMedCrossRefGoogle Scholar
  32. 32.
    Arai H, Miyamoto K, Taketani Y et al (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12(6):915–921PubMedCrossRefGoogle Scholar
  33. 33.
    Gennari L, Becherini L, Falchetti A et al (2002) Genetics of osteoporosis: role of steroid hormone receptor gene polymorphisms. J Steroid Biochem Mol Biol 81(1):1–24PubMedCrossRefGoogle Scholar
  34. 34.
    Whitfield GK, Remus LS, Jurutka PW et al (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177(1–2):145–159PubMedCrossRefGoogle Scholar
  35. 35.
    Jurutka PW, Remus LS, Whitfield GK et al (2000) The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14(3):401–420PubMedCrossRefGoogle Scholar
  36. 36.
    Colin EM, Weel AE, Uitterlinden AG et al (2000) Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol (Oxf) 52(2):211–216CrossRefGoogle Scholar
  37. 37.
    Pfeifer M, Begerow B, Minne HW (2002) Vitamin D and muscle Function. Osteoporos Int 13(3):187–194PubMedCrossRefGoogle Scholar
  38. 38.
    Montero-Odasso M, Duque G (2005) Vitamin D in the aging musculoskeletal system: An authentic strength preserving hormone. Mol Aspects Med 26(3):203–219PubMedCrossRefGoogle Scholar
  39. 39.
    Peng L, Malloy PJ, Feldman D (2004) Identification of a functional vitamin D response element in the human insulin-like growth factor binding protein-3 promoter. Mol Endocrinol 18(5):1109–1119PubMedCrossRefGoogle Scholar
  40. 40.
    Sweeney C, Murtaugh MA, Baumgartner KB et al (2005) Insulin-like growth factor pathway polymorphisms associated with body size in Hispanic and non-Hispanic white women. Cancer Epidemiol Biomarkers Prev 14(7):1802–1809PubMedCrossRefGoogle Scholar
  41. 41.
    Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16(1):3–34PubMedCrossRefGoogle Scholar
  42. 42.
    Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17(5):481–517PubMedCrossRefGoogle Scholar
  43. 43.
    Noguchi S (2005) The biological function of insulin-like growth factor-I in myogenesis and its therapeutic effect on muscular dystrophy. Acta Myol 24(2):115–118PubMedGoogle Scholar
  44. 44.
    Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984PubMedGoogle Scholar
  45. 45.
    Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • A. Windelinckx
    • 1
    • 3
  • G. De Mars
    • 1
  • G. Beunen
    • 1
  • J. Aerssens
    • 2
  • C. Delecluse
    • 1
  • J. Lefevre
    • 1
  • M. A. I. Thomis
    • 1
  1. 1.Research Center for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation SciencesKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of Translational Medical ResearchTIBOTEC bvbaMechelenBelgium
  3. 3.HeverleeBelgium

Personalised recommendations