Osteoporosis International

, Volume 18, Issue 7, pp 905–913 | Cite as

Bone surface topology mapping and its role in trabecular bone quality assessment using scanning confocal ultrasound

Original Paper

Abstract

Introduction:

Quantitative ultrasound (QUS) has been used to assess non-invasively bone quality, in which ultrasound velocity (UV) is a primary acoustic property.

Methods:

While UV calculation requires the tissue thickness in the ultrasound path, a bone surface topology mapping (STM) method was developed in this study for enhancing the accuracy of the UV measurement. STM accuracy was verified by both aluminum and a QUS heel phantom, indicating that the STM can determine the phantom thickness within 0.02 mm thickness error and the aluminum calibration step within 0.1 mm thickness error. STM performance was further evaluated using 25 cadaveric human calcanei samples.

Results:

The UV calculations using STM had a significant better correlation to bone mineral density (BMD) (r = 0.75, p < 0.05), volume fraction (r = 0.72, p < 0.05) and modulus (r = 0.69, p < 0.05) than the UV with fixed thickness. The later correlation coefficients were r = 0.64 for BMD, r = 0.65 for volume fraction, and r = 0.58 for modulus. The nBUA value determined using STM was also highly correlated to BMD (r2 = 0.74) and modulus (r2 = 0.62). This was comparable to the correlation result for BUA (BMD: r2 = 0.76; Modulus: r2 = 0.64).

Conclusion:

These results suggested that STM technique in scanning ultrasound is capable of determining calcaneus bone thickness and hence enhancing the accuracy of UV measurement.

Keywords

Bone mineral density Bone quality Osteoporosis Speed of sound Surface topology Ultrasound 

References

  1. 1.
    Keen RW (2003) Burden of osteoporosis and fractures. Curr Osteoporos Rep 1:66–70PubMedCrossRefGoogle Scholar
  2. 2.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012PubMedCrossRefGoogle Scholar
  3. 3.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160PubMedGoogle Scholar
  4. 4.
    McCarthy I, Goodship A, Herzog R, Oganov V, Stussi E, Vahlensieck M (2000) Investigation of bone changes in microgravity during long and short duration space flight: comparison of techniques. Eur J Clin Investig 30:1044–1054CrossRefGoogle Scholar
  5. 5.
    (2006) National Osteoporosis Foundation. Disease fast fact. National Osteoporosis FoundationGoogle Scholar
  6. 6.
    (2006) International Osteoporosis Foundation. Facts and statistics about osteoporosis and its impact. International Osteoporosis FoundationGoogle Scholar
  7. 7.
    Padilla F, Laugier P (2005) Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep 3:64–69PubMedCrossRefGoogle Scholar
  8. 8.
    Qin Y, Xia Y, Lin W, Gruber B, Judex S, Rubin C (2005) Quantitative prediction of bone density and strength in human calcanei using a scanning confocal acoustic diagnostic system. J Bone Miner Res 20:S230Google Scholar
  9. 9.
    Cortet B, Boutry N, Dubois P, Legroux-Gerot I, Cotten A, Marchandise X (2004) Does quantitative ultrasound of bone reflect more bone mineral density than bone microarchitecture? Calcif Tissue Int 74:60–67PubMedCrossRefGoogle Scholar
  10. 10.
    Nicholson PH, Muller R, Cheng XG, Ruegsegger P, Van Der Perre G, Dequeker J, Boonen S (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16:1886–1892PubMedCrossRefGoogle Scholar
  11. 11.
    Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15PubMedGoogle Scholar
  12. 12.
    Varenna M, Sinigaglia L, Adami S, Giannini S, Isaia G, Maggi S, Filipponi P, Di Munno O, Maugeri D, de Feo D, Crepaldi G (2005) Association of quantitative heel ultrasound with history of osteoporotic fractures in elderly men: the ESOPO study. Osteoporos Int 16:1749–1754PubMedCrossRefGoogle Scholar
  13. 13.
    Huopio J, Kroger H, Honkanen R, Jurvelin J, Saarikoski S, Alhava E (2004) Calcaneal ultrasound predicts early postmenopausal fractures as well as axial BMD. A prospective study of 422 women. Osteoporos Int 15:190–195PubMedCrossRefGoogle Scholar
  14. 14.
    Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202PubMedCrossRefGoogle Scholar
  15. 15.
    Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157:629–634PubMedCrossRefGoogle Scholar
  16. 16.
    Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514PubMedCrossRefGoogle Scholar
  17. 17.
    Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 1889–1897Google Scholar
  18. 18.
    (2001) National Osteoporosis Society. Position statement on the use of quantitative ultrasound in the management of osteoporosisGoogle Scholar
  19. 19.
    Cook RB, Collins D, Tucker J, Zioupos P (2005) The ability of peripheral quantitative ultrasound to identify patients with low bone mineral density in the hip or spine. Ultrasound Med Biol 31:625–632PubMedCrossRefGoogle Scholar
  20. 20.
    Louis O, Kaufman L, Osteaux M (2000) Quantitative ultrasound of the calcaneus with parametric imaging: correlation with bone mineral density at different sites and with anthropometric data in menopausal women. Eur J Radiol 35:65–69PubMedCrossRefGoogle Scholar
  21. 21.
    Njeh CF, Hans D, Fuerst T, Glüero C-C, Genant HK (1999) Quantitative ultrasound, assessment of osteoporosis and bone status. Martin Dunitz, LtdGoogle Scholar
  22. 22.
    Hausler KD, Rich PA, Barry EB (1997) Water bath and contact methods in ultrasonic evaluation of bone. Calcif Tissue Int 61:26–29PubMedCrossRefGoogle Scholar
  23. 23.
    Chappard C, Camus E, Lefebvre F, Guillot G, Bittoun J, Berger G, Laugier P (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3:121–131PubMedCrossRefGoogle Scholar
  24. 24.
    Wear KA (2000) Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med Biol 26:641–646PubMedCrossRefGoogle Scholar
  25. 25.
    Kotzki PO, Buyck D, Hans D, Thomas E, Bonnel F, Favier F, Meunier PJ, Rossi M (1994) Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int 54:91–95PubMedCrossRefGoogle Scholar
  26. 26.
    Han S, Medige J, Davis J, Fishkin Z, Mihalko W, Ziv I (1997) Ultrasound velocity and broadband attenuation as predictors of load-bearing capacities of human calcanei. Calcif Tissue Int 60:21–25PubMedCrossRefGoogle Scholar
  27. 27.
    Chen PJ, Chen TS, Lu MC, Yao WJ (2005) The measurements of ultrasound parameters on calcaneus by two-sided interrogation techniques. Meas Sci Technol 16:1349–1354CrossRefGoogle Scholar
  28. 28.
    Xia Y, Lin W, Mittra E, Demes B, Gruber B, Rubin C, Qin Y (2003) Performance of a Confocal acoustic mapping in characterization of trabecular bone quality in human calcaneus. J Bone Miner Res 18:S209Google Scholar
  29. 29.
    Xia Y, Lin W, Qin YX (2005) The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound. J Acoust Soc Am 118:1801–1807PubMedCrossRefGoogle Scholar
  30. 30.
    Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7:7–22PubMedCrossRefGoogle Scholar
  31. 31.
    Strelitzki R, Clarke AJ, Evans JA (1996) The measurement of the velocity of ultrasound in fixed trabecular bone using broadband pulses and single-frequency tone bursts. Phys Med Biol 41:743–753PubMedCrossRefGoogle Scholar
  32. 32.
    Gefen A, Seliktar R (2004) Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus. Med Eng Phys 26:119–129PubMedCrossRefGoogle Scholar
  33. 33.
    Damilakis J, Stratakis J, Perisinakis K, Gourtsoyiannis N (2002) Broadband ultrasound attenuation imaging: algorithm development and clinical assessment of a region growing technique. Phys Med Biol 47:315–325PubMedCrossRefGoogle Scholar
  34. 34.
    Serpe LJ, Rho JY (1996) Broadband ultrasound attenuation value dependence on bone width in vitro. Phys Med Biol 41:197–202PubMedCrossRefGoogle Scholar
  35. 35.
    Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91PubMedGoogle Scholar
  36. 36.
    Laugier P, Fournier B, Berger G (1996) Ultrasound parametric imaging of the calcaneus: in vivo results with a new device. Calcif Tissue Int 58:326–331PubMedGoogle Scholar
  37. 37.
    Laugier P (2002) In vivo ultrasound assessment of skeletal status: principles and techniques. Journees Os-Ultrasons, Compiegne, pp 24–25Google Scholar
  38. 38.
    Evans WD, Jones EA, Owen GM (1995) Factors affecting the in vivo precision of broad-band ultrasonic attenuation. Phys Med Biol 40:137–151PubMedCrossRefGoogle Scholar
  39. 39.
    Defontaine M, Bonneau S, Padilla F, Gomez MA, Nasser Eddin M, Laugier P, Patat F (2004) 2D arrays device for calcaneus bone transmission: an alternative technological solution using crossed beam forming. Ultrasonics 42:745–752PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringStony Brook UniversityNew YorkUSA

Personalised recommendations